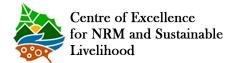


Government of Meghalaya

Workshop

on.

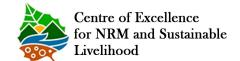
Geo-Spatial Applications for Natural Resource.


Management in Meghalaya:

Review and Way Forward

Moreau Institute of Integral Training (MIIT) Near RBI, Brookdene, Shillong 18th November, 2022

Organised by GIS Lab, MBDA/ MBMA



Workshop on

"Geo-Spatial Applications for Natural Resource Management in Meghalaya: Review and Way Forward"

Date: 18th November, 2022

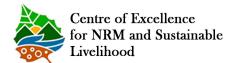
Venue: Moreau Institute of Integral Training (MIIT), Near RBI, Brookdene, Shillong

Background Note

Environment is the interplay of diverse biotic and abiotic constituents which are intricately linked to each other through various natural cycles and therefore it is a multidisciplinary subject. Its understanding requires information on many themes like land use land cover, forests, geology, soil, terrain, weather, quality of air and water and many others. Environment at any place to a great extent depends on how the natural resources have been managed and treated in that region in the past.

Geographic information system (GIS) is based on the concept of arranging information in many georeferenced spatial layers along with all textual and tabular data tagged to different features. It also provides powerful tools of analysis and map creation taking into account inter-linkages of data on various themes stored in the database. Remote sensing data allows us to map and assess bio-physical features on the earth in a cost and time efficient manner. Remote sensing and GIS, thus is the most optimum tool for natural resource management wherein one has to essentially deal with a data set of many bio-physical layers.

Over a period of time GIS Lab of MBDA has created a vast spatial database on natural resource of the State, considering the needs of natural resource management for different missions, climate change actions and implementation of various projects including externally aided projects. This has led to creation of a spatial database comprising more than 30 spatial layers relevant to the natural resource management. Creation of spatial database is an ongoing exercise wherein spatial layers from different sources which are in public domain (mostly from government agencies), primary data generated by the GIS team of MBDA and its functionaries and regular update and analysis of the existing layers have been undertaken. The database continues to grow.


It is intended that the above workshop would create wide awareness in the Departments and individuals associated with the natural resource management, environment, conservation and developmental activities about the use of spatial data in the State. It is proposed that the data from the database would be shared with others in soft and hard copies with a sharing framework in place.

The main objective of this workshop organised by the GIS Lab, MBDA are to create an awareness about different geo-spatial applications for NRM being done by different departments and how we all as a community of the stake holders can complement and supplement each other for the larger benefits to the State. The workshop also aims to provide a platform for interaction between the GIS analysts within the MBDA family particularly at the District units and also with experts from other departments and institutions.

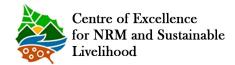
Workshop on

"Geo-Spatial Applications for Natural Resource Management in Meghalaya: Review and Way Forward"

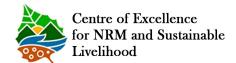
Date: 18th November, 2022

Venue: Moreau Institute of Integral Training (MIIT), Near RBI, Brookdene, Shillong

Time: 1030 - 1700 hrs


Programme

11:20-11:30 am Village Level Land Use Land Cover Mapping for Khasi & Jaintia Hills Region Land Use Change in Mining Areas of Jaintia Hills, Meghalaya 12:00-12:15 pm Identification of Their Recurrence: A Remote Sensing Approach Prof. Hiambok Syiemlieh Dept. of Geography, NEHU Geo-Spatial Applications for Preparation of Forest Management Plans Village boundary mapping for NRM in Meghalaya Land Use Land Cover Change Analysis in Garo Hills: Grid Based Sampling Approach O1:00-01:15 pm Village boundary mapping for Natural Resource Management ESRI Solutions on Natural Resource Management Geography, NEHU Shri Stebanshon Mylliemngap, Asst. Manager GIS MBDA/MBMA Shri Fettleman Dohling, Manager GIS MBDA/MBMA Smit. Norita Sohlang Asst. Manager GIS MBDA/MBMA ESRI Solutions on Natural Resource Management Smt. Suhsiengmon Lating	Programme							
Welcome and Overview of the Geo- Spatial Applications on NRM in Meghalaya 10:30-10:45 am Speech Spri Gunanka DB, IFS Executive Director-CLLMP/MegLIFI Speech Speech Speech Spri Gunanka DB, IFS Executive Director-CLLMP/MegLIFI Speech Speech Speech Speech Speech Speech Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Speech Speech Speech Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Speech Speech Speech Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Speech Speech Speech Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Speech Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Spri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-Clamp Spri Gunanka DB, IFS Executive Direct	Time	Topics	Speaker					
10:30-10:45 am Spatial Applications on NRM in Meghalaya 10:45-11:00 am Speech Speech Prof. O. P. Singh Dept. of Environment, NEHU 11:00-11:15 am Speech Director Survey of India Session Survey of India Session Session Shri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Session NESAC 11:45-11:45 am Napping for Khasi & Jaintia Hills Region NESAC 11:45-12:00 pm Land Use Change in Mining Areas of Jaintia Hills, Meghalaya Sensing Approach Remote Sensing Approach Preparation of Forest Management Plans 12:30-12:45 pm Land Use Land Cover Change Analysis in Garo Hills: Grid Based Sampling Approach 12:45-01:00 pm ESRI Solutions on Natural Resource Management Sensing Applications for Person Natural Resource Management Self I amplications for Panagement Self I amplications on Natural Resource Management Self I amplications for Person Natural Resource Management Self I amplications for Management Self I amplications for Person Natural Resource Self I amplications for Person Natural Resource Self I amplications for Payment Self I amplicati	9:30-10:30 am	Reg	gistration					
Dept. of Environment, NEHU 11:00-11:15 am Speech Speech Dr. M Stalin Director Survey of India Shri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI 11:20-11:30 am Village Level Land Use Land Cover Mapping for Khasi & Jaintia Hills Region 11:45-12:00 pm Land Use Change in Mining Areas of Jaintia Hills, Meghalaya Land Use Change in Mining Areas of Jaintia Hills, Meghalaya 12:00-12:15 pm Identification of Their Recurrence: A Remote Sensing Approach Remote Sensing Approach Prof. Hiambok Syiemlieh Dept. of Geography, NEHU Geo-Spatial Applications for Preparation of Forest Management Plans Village boundary mapping for NRM in Meghalaya Land Use Land Cover Change Analysis in Garo Hills: Grid Based Sampling Approach Dr. Jenita Nongkynrih Scientist NESAC Prof. O. P. Singh Dept. of Environment, NEHU Scientist NESAC Prof. Hiambok Syiemlieh Dept. of Geography, NEHU Shri Stebanshon Mylliemngap, Asst. Manager GIS MBDA/MBMA Shri Fettleman Dohling, Manager GIS MBDA/MBMA Shri Fettleman Dohling, Manager GIS MBDA/MBMA Smr. Norita Sohlang Asst. Manager GIS MBDA/MBMA Diamager GIS MBDA/MBMA ESRI Solutions on Natural Resource Management ESRI Team Smt. Suhsiengmon Lating	10:30-10:45 am	Spatial Applications on NRM in	Co-Chairman & Director CoE,					
11:00-11:15 am Speech Oirector Survey of India Shri Gunanka DB, IFS Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI Executive Director BEXEL Director Survey of India Shri Gunanka DB, IFS Executive Director BEXEL Director Executive Director Bexel Director Survey of India Shri Gunanka DB, IFS Executive Director Executive Director BEXEL Director Executive Director Executive Director Executive Director Bexel Director Executive Director Bexel Director Executive Director Bexel Director Executive Director Executive Director Executive Director Bexel Director Executive Direct	10:45-11:00 am	Speech						
11:15-11:20 am Vote of Thanks for the Inaugural Session Session Executive Director MBDA, & Addl. Project Director-CLLMP/MegLIFI 11:20-11:30 am Village Level Land Use Land Cover Mapping for Khasi & Jaintia Hills Region 11:45-12:00 pm Land Use Change in Mining Areas of Jaintia Hills, Meghalaya 12:00-12:15 pm Identification of Their Recurrence: A Remote Sensing Approach Geo-Spatial Applications for Preparation of Forest Management Plans Village boundary mapping for NRM in Meghalaya Land Use Change in Mining Areas of Jaintia Hills, Meghalaya Prof. O. P. Singh Dept. of Environment, NEHU Shri Stebanshon Mylliemngap, Asst. Manager GIS MBDA/MBMA Shri Fettleman Dohling, Manager GIS MBDA/MBMA Shri Fettleman Dohling, Manager GIS MBDA/MBMA Land Use Land Cover Change Analysis in Garo Hills: Grid Based Sampling Approach ESRI Solutions on Natural Resource Management Management Geo-spatial Applications for Payment Smt. Suhsiengmon Lating	11:00-11:15 am	Speech	Director					
Village Level Land Use Land Cover Mapping for Khasi & Jaintia Hills Region 11:45-12:00 pm Land Use Change in Mining Areas of Jaintia Hills, Meghalaya Identification of Their Recurrence: A Remote Sensing Approach Geo-Spatial Applications for Preparation of Forest Management Plans Village boundary mapping for NRM in Meghalaya Land Use Land Cover Change Analysis in Garo Hills: Grid Based Sampling Approach ESRI Solutions on Natural Resource Management Cooperatial Applications for Preparation of Natural Resource Management Smt. Suhsiengmon Lating Dr. Jenita Nongkynrih Scientist NESAC Prof. O. P. Singh Dept. of Environment, NEHU Shri Stebanshon Mylliemngap, Asst. Manager GIS MBDA/MBMA Shri Fettleman Dohling, Manager GIS MBDA/MBMA Smt. Norita Sohlang Asst. Manager GIS MBDA/MBMA Sampling Approach ESRI Team Smt. Suhsiengmon Lating	11:15-11:20 am		•					
11:30-11:45 am Mapping for Khasi & Jaintia Hills Region 11:45-12:00 pm Land Use Change in Mining Areas of Jaintia Hills, Meghalaya 12:00-12:15 pm Identification of Their Recurrence: A Remote Sensing Approach Geo-Spatial Applications for Preparation of Forest Management Plans Village boundary mapping for NRM in Meghalaya Land Use Land Cover Change Analysis in Garo Hills: Grid Based Sampling Approach Dept. of Environment, NEHU Shri Stebanshon Mylliemngap, Asst. Manager GIS MBDA/MBMA Shri Fettleman Dohling, Manager GIS MBDA/MBMA Smt. Norita Sohlang Asst. Manager GIS MBDA/MBMA Smt. Suhsiengmon Lating	11:20-11:30 am	Inau	ıgural Tea					
Jaintia Hills, Meghalaya Dept. of Environment, NEHU 12:00-12:15 pm Identification of Their Recurrence: A Remote Sensing Approach Geo-Spatial Applications for Preparation of Forest Management Plans Village boundary mapping for NRM in Meghalaya Land Use Land Cover Change 12:45-01:00 pm Arst. Manager GIS MBDA/MBMA Shri Fettleman Dohling, Manager GIS MBDA/MBMA Shri Norita Sohlang Asst. Manager GIS MBDA/MBMA Smt. Norita Sohlang Asst. Manager GIS MBDA/MBMA Smt. Norita Sohlang Asst. Manager GIS MBDA/MBMA ESRI Solutions on Natural Resource Management Geo-spatial Applications for Payment Geo-spatial Applications for Payment Smt. Suhsiengmon Lating	11:30-11:45 am	Mapping for Khasi & Jaintia Hills	Scientist					
12:00-12:15 pm Remote Sensing Approach Geo-Spatial Applications for Preparation of Forest Management Plans 12:30-12:45 pm Village boundary mapping for NRM in Meghalaya Land Use Land Cover Change Analysis in Garo Hills: Grid Based Sampling Approach O1:00-01:15 pm Remote Sensing Approach Geo-Spatial Applications for Shri Stebanshon Mylliemngap, Asst. Manager GIS MBDA/MBMA Shri Fettleman Dohling, Manager GIS MBDA/MBMA Smt. Norita Sohlang Asst. Manager GIS MBDA/MBMA ESRI Solutions on Natural Resource Management Geo-spatial Applications for Payment Geo-spatial Applications for Payment Smt. Suhsiengmon Lating	11:45-12:00 pm		l G					
12:15-12:30 pm Preparation of Forest Management Plans Asst. Manager GIS MBDA/MBMA 12:30-12:45 pm Village boundary mapping for NRM in Meghalaya Shri Fettleman Dohling, Manager GIS MBDA/MBMA Land Use Land Cover Change Smt. Norita Sohlang Analysis in Garo Hills: Grid Based Sampling Approach Asst. Manager GIS Sampling Approach MBDA/MBMA 13:45-01:00 pm ESRI Solutions on Natural Resource Management Smt. Suhsiengmon Lating Geo-spatial Applications for Payment Smt. Suhsiengmon Lating	12:00-12:15 pm							
12:30-12:45 pm Village boundary mapping for NRM in Meghalaya Land Use Land Cover Change 12:45-01:00 pm Land Use Land Cover Change Analysis in Garo Hills: Grid Based Sampling Approach ESRI Solutions on Natural Resource Management Coo-spatial Applications for Payment Smt. Suhsiengmon Lating	12:15-12:30 pm	Preparation of Forest Management	Asst. Manager GIS					
12:45-01:00 pm Analysis in Garo Hills: Grid Based Sampling Approach MBDA/MBMA ESRI Solutions on Natural Resource Management Geo-spatial Applications for Payment Geo-spatial Applications for Payment Smt. Suhsiengmon Lating	12:30-12:45 pm	, , , , ,	Manager GIS					
01:00-01:15 pm Management ESRI Team Management Smt. Suhsiengmon Lating	12:45-01:00 pm	Analysis in Garo Hills: Grid Based	Asst. Manager GIS					
	01:00-01:15 pm		ESRI Team					
for Eco-system Service Asst. Manager GIS MBDA/MBMA	01:15-01:30 pm	Geo-spatial Applications for Payment for Eco-system Service	Asst. Manager GIS					
01:30-02:15 pm Lunch	01:30-02:15 pm		Lunch					


Programme Cont.

Time	Topics	Speaker (Tentative)				
02:30-02:40 pm	Geo-Spatial Applications in the State Forest Department	Forest Department of Meghalaya				
02:15-02:30 pm	Geo-Spatial Applications in the State Soil & Water Conservation Department	Soil & Water Conservation Department of Meghalaya				
02:40-02:50 pm	Geo-Spatial Applications in the State Water Resource Department	Water Resource Department of Meghalaya				
02:50-03:00 pm	Geo-Spatial Database on NRM For Meghalaya Created by GIS Lab, MBDA	Smt. Aibiang Meka Kharsahnoh PA GIS MBDA/MBMA				
03:00-03:15 pm	Springshed Mapping	Dr. Wansah Pyrbot Manager Water Resources CLLMP-MBMA				
03:15-03:30 pm	Training on Uses of Remote Sensing, GIS & GPS Tools and Technologies	Smt. Silgamchiy Shira PA GIS MBDA/MBMA				
03:30-03:45 pm	Drone Applications in NRM	Shri Kishore Kumar Y. Technical Specialist UAV-RS, MBDA				
03:45-04:00 pm	Light Refreshment					
04:00-04:40 pm	Panel Discussion & Way Forward					
04:30-05:00 pm	Vote	of Thanks				

Geo-Spatial Applications for Natural Resource Management in Meghalaya: Review and Way Forward

VILLAGE LEVEL MAPPING

FOR

MEGHALAYA

USING

HIGH RESOLUTION GEOSPATIAL DATA

18th November, 2022

Funded By -

Executed By -

Dr. Jenita Mary Nongkynrih Scientist SF, Head, Urban & Regional Planning Division jnongkynrih@nesac.gov.in Mob:9436164699

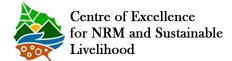
VILLAGE LEVEL MAPPING

OBJECTIVES & COMPONENTS

TO GENERATE A GEOSPATIAL DATABASE FORMEGHALAYA USING HIGH
RESOLUTION GEOSPATIAL DATA

Creation of Geodatabase

Mobile Apps & Geo-portal Development


COMPONENTS

Village Development Plans

VILLAGE LEVEL MAPPING

DESIGN & STANDARDS

ELEMENTS OF STANDARDS

- Remote Sensing Image Standards.
- · Spatial Reference Standards.
- Geo-spatial Data Content and GIS Database Standards.
- Quality Assurance/Quality Check.

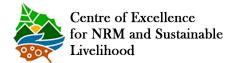
OUTCOME / DELIVERABLES

VILLAGE LEVEL MAPPING

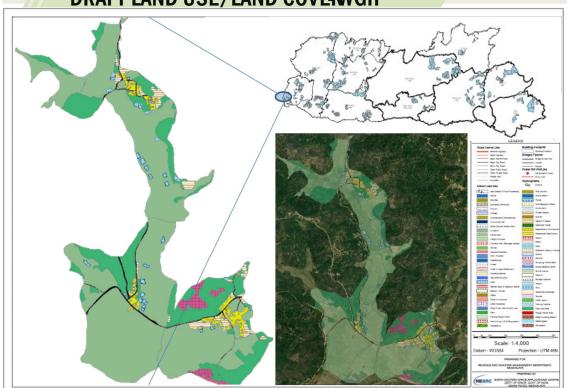
- Final maps in the form of userfriendly spatial products at the functional scale of 1:4000 having defined layers such as Administrative Boundary, Landuse / land cover map, Landmarks.
- Development of Mobile application to be deployed at NESAC/MBDA.

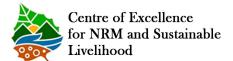
GEO-SPATIAL DATA CONTENT SI Spatial Layers No. | Spatial Layers | Agricultural Lend | Central Govd. Property | Commercial | Communication | C

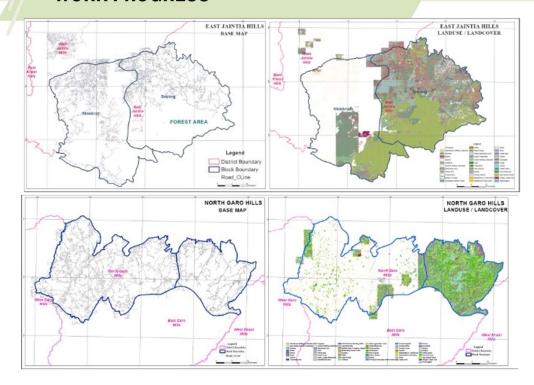
SPATIAL NON-SPATIAL Geometry Attribute Name nal Highway Polygon / Line Green Areas Polygon / Line Road Id Health Services 2. Rail Major District ■ Heritage Polygon/Line Sub-Class 3. Bridges Industrial
Mixed Length in km Ward Numbe Polygon / Line 4. Flyovers Others
Public Utilities
Public Semipublic Road Name Polygon/Line 5.Water bodies Road Construction Material Polygon / Line Polygon / Line Carriage Width (in mt.) Right of Way Width (in mt.) Ring Road III Railway Service Roos Polygon / Line EEE .M. Land Use/Land cover Maintained By Major City Road Polygon / Line Religious Foot Path Residential Polygon / Line Utilities* Other Public Road Polygon / Line Foot path width(in mt.in case Yes Rural Other Private Shifting Cultivation Foot Path Construction material Polygon/Line Water Supply Network Polygon / Line west BRIS Solid Waste Management Pands Power Supply Network Specific Land Use
State Govt. Proper Cycle Track Village road Polygon / Line Polygon / Line IV Hypsography Traffic related □ Transportation
 □ Unclassified Cartrack Line Digital Elevation Model Back Water ☐ Vacant Land Line Right of way ■ WaterBodies Other Water Socies


CLASSES -----71

SUB-CLASSES -----503





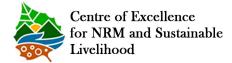


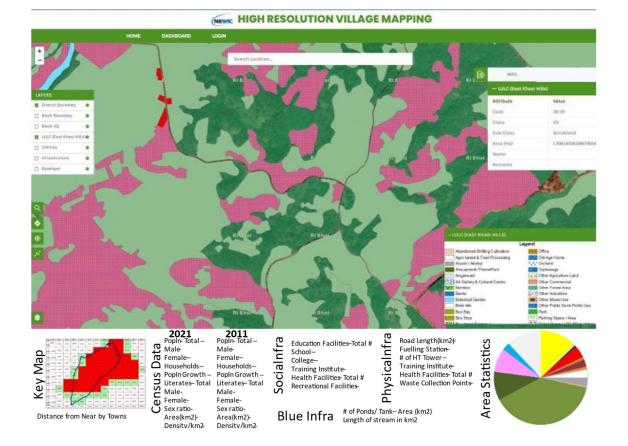
VILLAGE LEVEL MAPPING

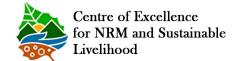
WORK PROGRESS

VILLAGE LEVEL MAPPING

POINT LOCATIONS WITH FIELD PHOTOS







THANK YOU

Land use land cover (LULC) changes in mining areas of Jaintia Hills, Meghalaya

Dr. O. P. Singh

Professor

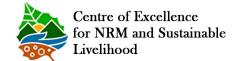
DEPARTMENT OF ENVIRONMENTAL STUDIES

NORTH-EASTERN HILL UNIVERSITY

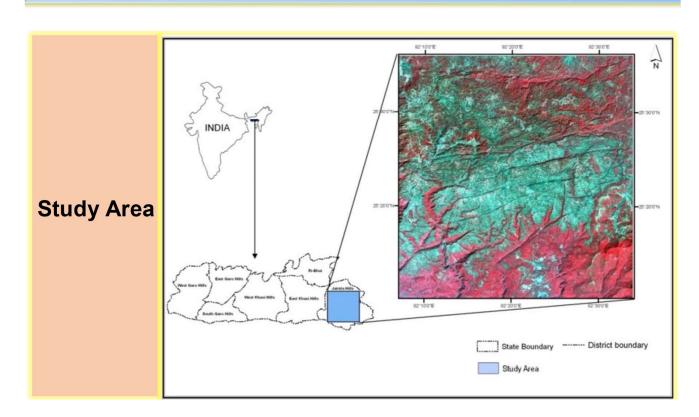
SHILLONG-793022

+91-364 2721159 (O); +91-9436100702 (M)

opsinghnehu@gmail.com; opsinghnehu@rediffmail.com


Main objectives of the study

- -to understand the spatio-temporal LULC changes in Jaintia Hills for 26 years (during 19872013) and
- -to know the probable causes of such changes.



Study Area


- The study area is situated at approximately 926'83"E and 25°36'03"N longitude, and 9234'27"E and 25°09'24"N latitude of Jaintia Hills.
- The study area covers an area of approximately 2023.60 km².
- The selected study area comprises of disturbed areas in Jaintia Hills, which has been subjected to various types of human interventions including mining activities (coal and limestone), industrial expansion, urbanization and commercial activity, agricultural expansion, plantation, shifting cultivation etc.

Satellite Data used:

The study was conducted by using Landsat series satellite data comprising TM (1987), ETM+ (1999), and OLI (2013).

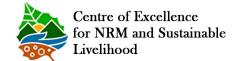
Land use land cover (LULC) categories:

A total of 7 categories of LULC were identified and analyzed representing

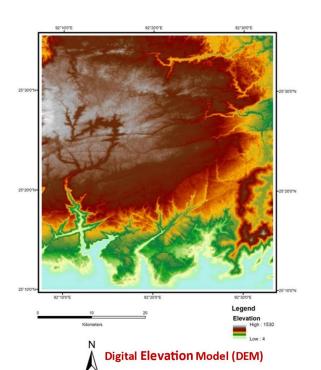
2 forest cover categories (dense and open forest) and

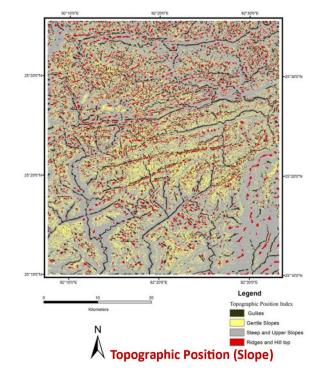
5 non-forest cover categories (shrub/grassland, cropland, barren land, builtup, and water body).

Methodology (1)


Three time series LULC maps were classified by combining two hybrid supervised unsupervised classification methods called 'guided clustering' and 'cluster busting' from TM (987), ETM+ (1999) and OLI (2013).

The resulted classified maps was subjected to post classification editing and filtering process to remove the salt and pepper effects as well as to improve accuracy. The 3*3 majority filtering was selected and used as the post classification filtering mode for generating the final output LULC maps.

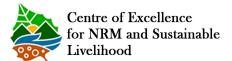


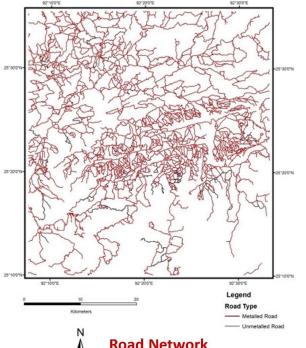

Methodology (2)

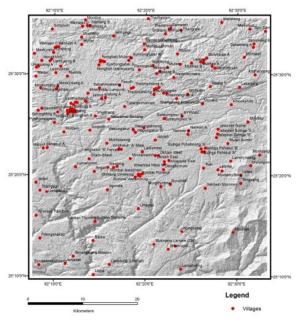
The accuracy of the final output LULC maps for 1987, 1999, and 2013 were evaluated by means of user's accuracy, producer's accuracy, overall accuracy, and kappa coefficients. This was done by using a confusion matrix embedded in 'Erdas Imagine'.

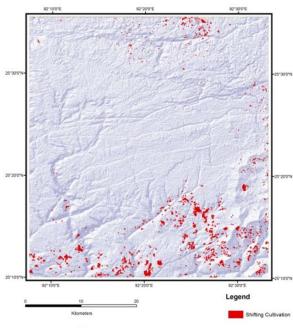
For determining the accuracy both the reference data and the classified image (final output LULC map) weretaken into account for each LULC maps separately.

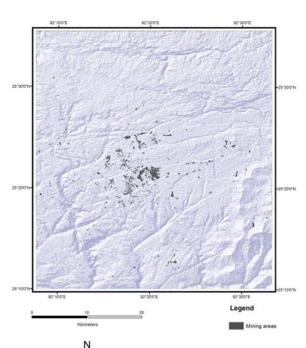
For each LULC map, a total of 520 stratified random points (pixel) were set up and then compared with the reference data.

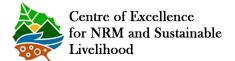




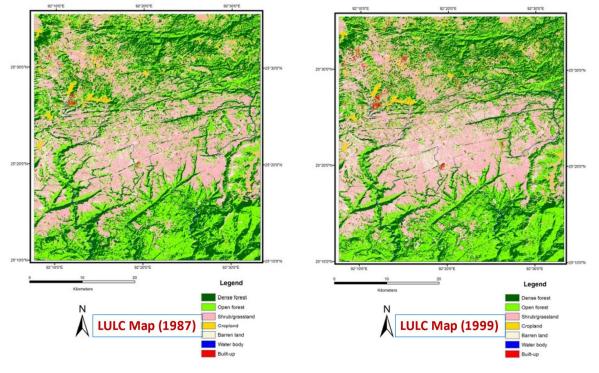


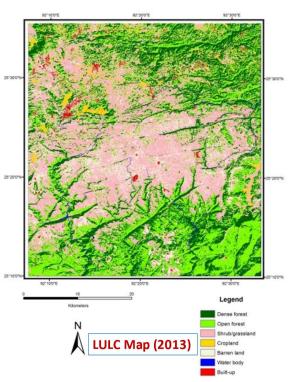


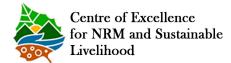


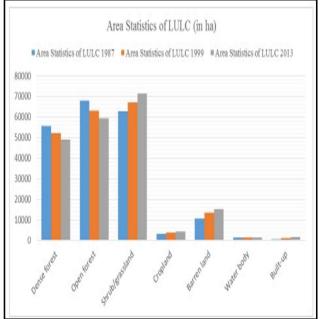

★ Shifting Cultivation Areas

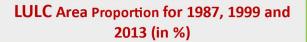
Mining Areas

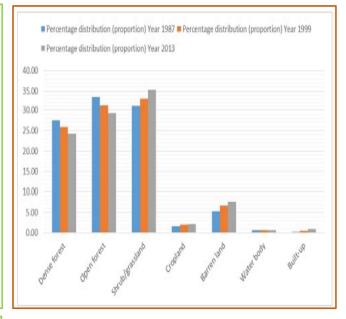








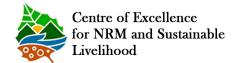

LULC class	Ar	Area Statistics of LULC			
	1987	1999	2013		
Dense forest	55825.11	52305.39	48995.01		
Open forest	67879.53	63209.52	59331.6		
Shrub/grassland	62832.6	67050.54	71321.31		
Cropland	3322.8	4050.54	4440.51		
Barren land	10674.99	13508.91	15256.8		
Water body	1221.03	1221.03	1247.49		
Built-up	610.02	1020.15	1773.36		



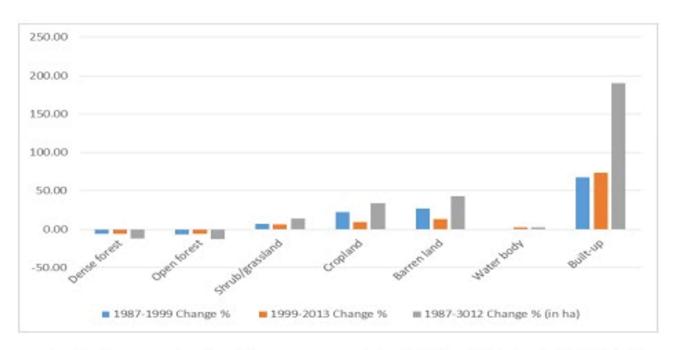
LULC Area Statistics for 1987, 1999 and 2013

Graphical Representation of LULC Area Statistics for 1987, 1999 and 2013 (in ha)

LULC class	Percentage Distribution or Proportion (in %)					
	Year					
	1987	1999	2013			
Dense forest	27.59	25.85	24.21			
Open forest	33.54	31.24	29.32			
Shrub/grassland	31.05	33.13	35.24			
Cropland	1.64	2.00	2.19			
Barren land	5.28	6.68	7.54			
Water body	0.60	0.60	0.62			
Built-up	0.30	0.50	0.88			

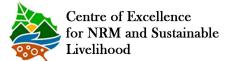


Graphical Representation of LULC Area Proportion for 1987, 1999 and 2013 (in %)



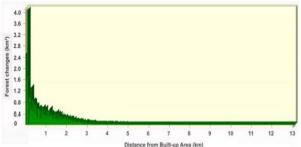
LULC Change Percentage during 1987 -1999, 1999-2013, and 1987 - 2013 (in %)

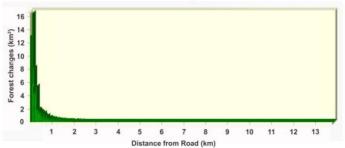
LULC class	1987-1999	1999-2013	1987- 2013
	Change %	Change %	Change % (in ha)
Dense forest	-6.30	-6.33	-12.23
Open forest	-6.88	-6.14	-12.59
Shrub/grassland	+6.71	+6.37	+13.51
Cropland	+21.90	+9.63	+33.64
Barren land	+26.55	+12.94	+42.92
Water body	0.00	+2.17	+2.17
Built-up	+67.23	+73.83	+190.71

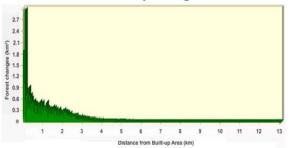


Graphical Representation of LULC Change Percentage during 1987999, 19992013, and 19872013 (in %)



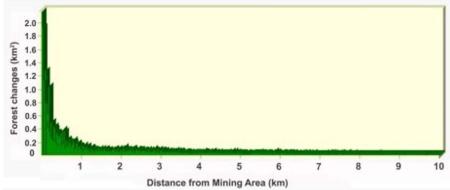


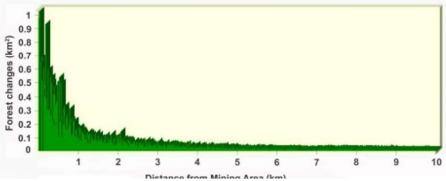




Relationship between Forest Cover Change (loss) and Road network during 19871999

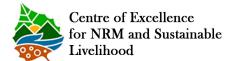
Relationship between Forest Cover Change (loss and Built-Up during 1987-1999

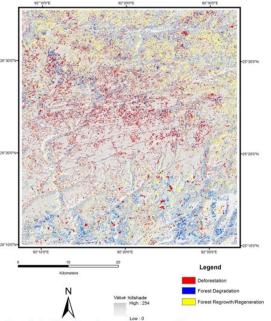


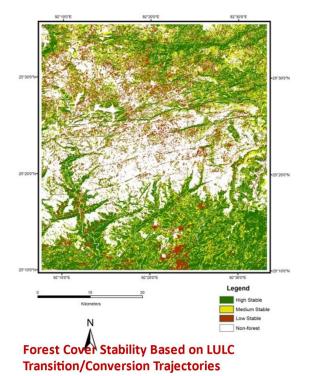

Relationship between Forest Cover Change (loss) and Road network during 19992013

Relationship between Forest Cover Change (loss) and Built-Up during 1999-2013

Relationship between
Forest Cover Change (loss)
and Mining Area during
1987-1999


Relationship between
Forest Cover Change (loss)
and Mining Area during
1999-2013





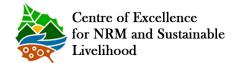
Spatial Distribution of Forest Change types based on Transition/Conversion during 1987

Summary

Significant changes in the proportion and distribution of different LULC classes have taken place during the 26 years (1987-2013).

The open forest area was found to be the dominant LULC class in the study area in 1987 and over the time it was replaced by the shrub/grassland.

Declining trend in the areas of forest classes (dense and open forest) along with an increasing trend in the area under other non-forest classes (i.e. shrub/grassland, cropland, barren land, built-up and water body) was noticed.

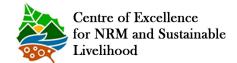

The LULC conversion/transformation analysis showed that the LULC dynamics in the study area largely happened mainly due to the interaction among dense forest, open forest and shrub/grassland.

Seven proximate factors of human intervention 'distance to road network', 'distance to shifting cultivation, 'distance to agricultural area', distance to mining area', 'distance to shifting cultivation' were found to be the significant factors that drive the forest landscape changes.

Recommendations

There is need for

- proper land use planning in order to minimize negative changes in LULC.
- imposing regulations and restrictions in order to minimize further degradation of ecologically sensitive areas.
- restoration activities for improvement of forest area and its quality.


Acknowledgement

The presentation was based on the data of Doctoral Thesis of Dr. Thangjam Somendro Singh.

NRM UNDER CLIMATE UNCERTAINITY

HOW DO WE MOVE FORWARD IN MEGHALAYA?

All lifeforms on earth depend on nature

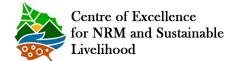
If all mankind were to disappear,

The world would regenerate back to the rich state of equilibrium

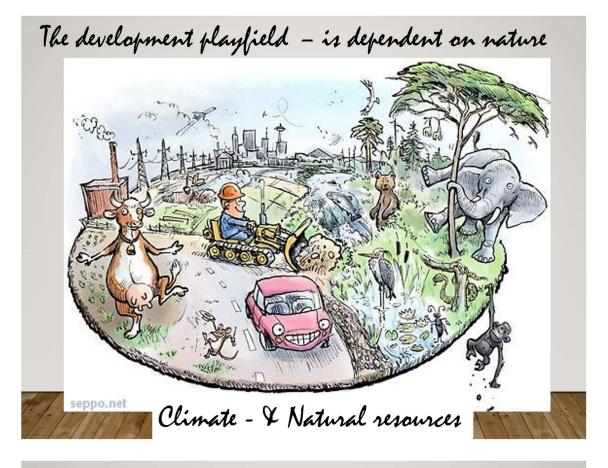
That existed ten thousand years ago.

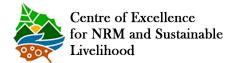
If insects were to vanish,

The environment would collapse into chaos.

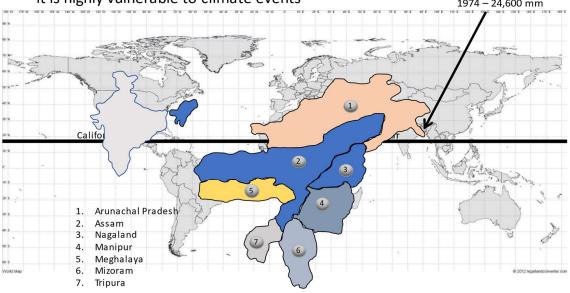

Edward O Wilson

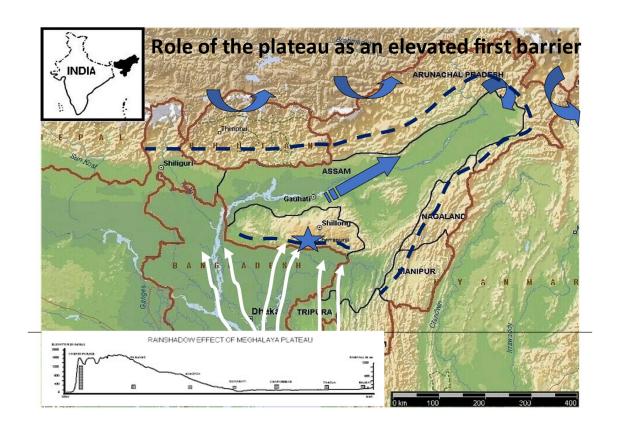
But man has extra demands




PRESENT UNDERSTANDING OF CLIMATE IN THE REGION

The physical character of N. E. India

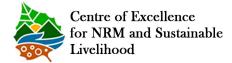


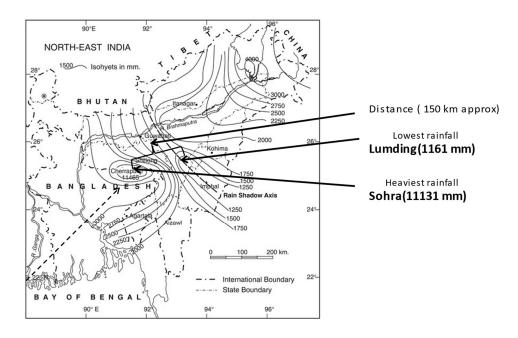


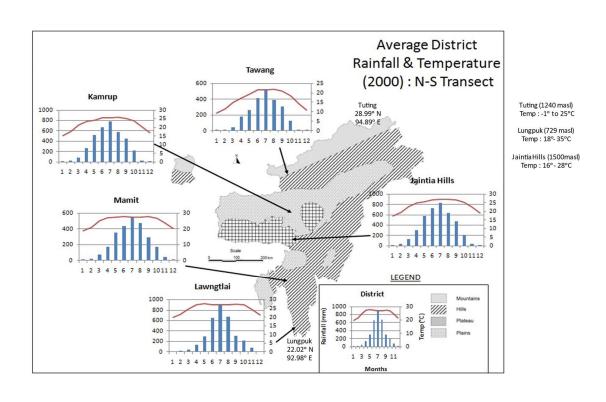
A naturally wet region

• This is the only wet region located along these latitudes;

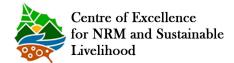
 The rest of the areas around the globe are deserts, hence it is highly vulnerable to climate events Heavy Rainfall Recorded a 6 ohra 1874 – 23,663 mm 1961 – 22,987 mm 1974 – 24,600 mm

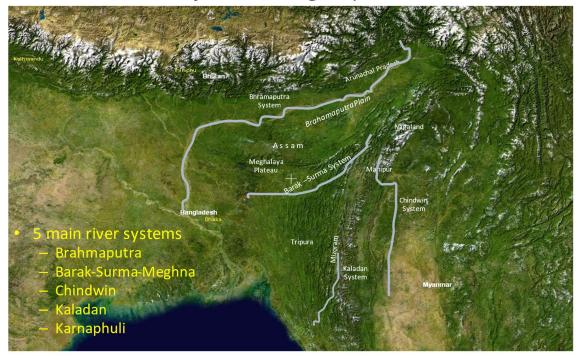






Reduction of rain volume within short distance

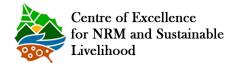


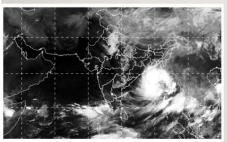


N E India: Major Drainage systems

Flood: A Major Recurring Disaster in different areas

Year	Some information on the floods								
1900	Change in river bed level after the 1897 earthquake								
1906	Change in river bed level after the 1897 earthquake								
1913	Highest flood since 1883 due to continuous rain								
1915	Both Cachar & Sylhet under water durin most of May to July due to incessant rai								
1916	Cachar & Sylhet under water in October due to rain in Mizo Hills and Manipur								
	Nowgong was also under water due to rain in Jaintia Hills & N C Hills								
1927	Assam Valley under water								
1928	Cachar & Sylhet under water in October due to rain								
1929	Cachar & Sylhet under water in May & June due to excessive rain in K & J Hills								
1981	3 waves								
1984	5 waves in May, June, July (2) & Sept in Brahmaputra Valley								
1985	2 waves in June & July in Brahmaputra Valley								
1986	4 waves in June, July, August & Sept								
1987	Unprecedented intense floods								
1988	Most intense maximum area of the Brahmaputra Valley submerged								
1997	From June to Sept (Brahmaputra Valley & Barak Valley								
1998	From June to Sept (Brahmaputra Valley & Barak Valley								
2000	3 waves this time affecting from AP (June to August)								
2013	Affecting Assam & northern districts of Bangladesh								
2014	Assam & Meghalaya (Garo Hills) flooded due to incessant rains								
2017	Assam Valley (Sivsagar to Dhubri, Cachar), AP, Nagaland & Manipur								





TROPICAL CYCLONES AND THEIR EFFECTS ON N.E.INDIA

- •The Indian sub-continent is one of the worst affected by cyclones in the world
- •Vulnerability : ~ 8% of area; East Coast & Gujarat
- •5-6 tropical cyclones in the BoB & Arabian Se Extremely Severe Cyclonic Storm Hudhud
- •More cyclones inBoB; sometimes severe
- •Time : May, June, October & November Cyclone Mora : End of May 2017

Satellite image of Cyclone Mora. (Credit: IMD)

According to the Indian Meteorological Department (IMD), it is expected to intensify into a "severe cyclonic storm" in the next 24 how with wind speeds in the range of 100-150 kilometres per hour.

Extremely severe cyclonic storm (IMD scale) Category 4 tropical cyclone (\$SHWS) Hudhud nearing landfall at 3-minute sestained: 185 km/h (115 mph) naivez 215 km/h (130 mph) Ouste: 250 km/h (150 mph) Pressure 950 hPa (mbar); 28.05 inHg Fatalities 124 total Damage \$3.4 billion (2014 USD) Areas affected Andamen and Nicober Islands - Andhra Pradesh, Vishakhapatnam - Odisha -Chhattlegarh - Madhya Pradesh - Uttar Pradesh - Nepal

Oct 812, 2014

Rainfall on 8 Oct: 51 mm @ohra

Cyclone Laila on May 19
Formed May 17, 2010
Dissipated May 21, 2010
Highest winds 3-minute sustained:
100 km/h (65 mph)
1-minute sustained:
120 km/h (75 mph)
Lowest pressure 986 hPa (mbar); 29.12 inHg
Fatalities 65 total
Damage \$117.49 million (2010 USD)

Areas affected Sri Lanka, India

Rainfall on 19-22 May 486.5 mr

@Sohra

Rainfall on 31 May:84 mm @hra

SIDR: POST MONSOON CYCLONE (1516 NOV,2007)

RESEARCH ARTICLES: CURRENT SCIENCE, VOL. 100, NO. 10, 25 MAY 2011 1522 Singh, S., Hayashi, T., Syiemlieh, H.J., Cajee, L., & Terao , T.: Weather variability and rainfall pattern of lot, the post-monsoon cyclonic storm of 15 November 2007 in the Meghalaya Plateau, India

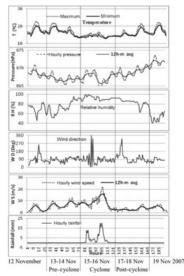


Figure 5. Weather conditions of 8-days duration of pre-cyclone cyclone and post-cyclone stages starting from 00 h 12 November to 2300 h 19 November 2007 at Cherrapunji. 12 h m avg, Twelve hours moving average.

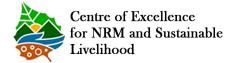
Date	Time (h)	Air temperature (°C)	Relative humidity (%)	Wind speed (m/s)	Wind direction	Hourly rainfall (mm)	Barometeric pressure (hPa)	Psychrometric index (hPa/°C)	Saturation vapour pressure (hPa)	Vapour pressure (hPa/°C)
Starting phase	Service Servic	Formeliker							/000-000000000000000000000000000000000	
15 November	21:00	14.33	89.78	13.05	NNE	3.6	869.6	0.57855	16.32270	1.13905
15 November	22:00	14.88	89.19	13.35	NE	4.0	869.0	0.57815	16.91270	1.13660
15 November	23:00	15.33	88.21	6.60	NNE	1.8	868.7	0.57795	17.40929	1.13563
16 November	0:00	14.61	95.13	7.65	NNE	0.2	868.1	0.57755	16.62076	1.13762
16 November	1:00	15.81	95.86	11.55	SEE	0.8	866.6	0.57655	17.95306	1.13555
16 November	2:00	16.07	94.17	8.10	SEE	3.2	866.3	0.57635	18.25378	1.13589
16 November	3:00	15.97	85.65	15.00	E	8.8	864.5	0.57515	18.13760	1.13573
16 November	4:00	14.76	95.86	17.85	SE	7.2	864.8	0.57535	16.78240	1.13701
Heavy rainfall phas	e									
16 November	5:00	14.70	96.94	17.85	SSE	10.8	864.8	0.57535	16.71758	1.13725
16 November	6:00	14.61	97.85	22.05	SEE	20.2	864.5	0.57515	16.62076	1.13762
16 November	7:00	14.51	97.57	21.30	E	15.6	865.1	0.57555	16.51377	1.13809
16 November	8:00	13.86	98.27	14.40	SSE	20.2	866.0	0.57615	15.83292	1.14234
16 November	9:00	13.38	98.08	16.35	SE	18.0	866.9	0.57675	15.34611	1.14694
16 November	10:00	13.22	96.16	11.40	SE	10.8	866.9	0.57675	15.18679	1.14877
16 November	11:00	12.96	95.78	12.60	SE	6.6	866.6	0.57655	14.93100	1.15208
16 November	12:00	13.07	94.40	8.85	NEE	5.0	866.0	0.57615	15.03875	1.15063

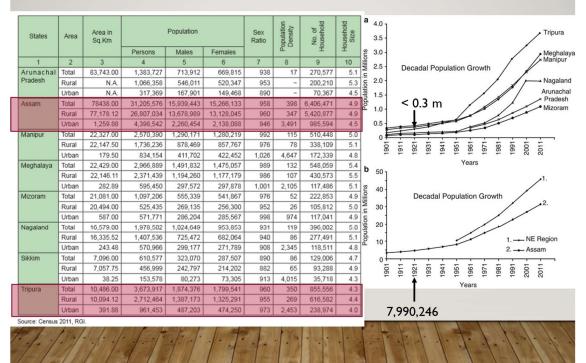
Table 5. Rainstorm pattern during cyclone Sidr (48 hours from 00 h 15 November 2007)


Station	Duration (h) and amount of rainfall (mm)	Intensity (mm/h)	Hourly maximum rainfall (mm)	Hourly minimum rainfall (mm)	Hourly mean rainfall (mm)	Skewness (coefficient)	Kurtosis (coefficient)	SD (mm)	CV (%)	Active level of rainfall (mean + SD) (mm)
Cherrapunji	40 (204.6)	5.115	20.20	0.20	4.26	1.5663	1.5815	5.65	110.67	9.91
Thangkarang	34 (137.0)	4.030	21.00	0.50	2.85	1.6503	2.0904	3.93	97.65	6.78
Mawsynram	44 (157.5)	3.591	16.50	0.50	3.28	1.5304	2.2941	3.77	105.42	7.05
Pynursla	34 (220.5)	6.485	16.50	0.50	4.59	1.4592	1.5553	5.58	86.74	10.17
Amlarem	33 (113.0)	3.424	12.00	0.50	2.35	1.6190	2,7774	2.93	85.67	5.28
Nongpoh	26 (38.6)	1.484	6.00	0.20	0.81	2.2592	4.1643	1.52	102.86	2.33
Byrnihat	11 (7.5)	0.682	2.40	0.20	0.16	3.9185	17.5391	0.49	314.24	0.65

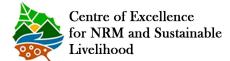
Rainfall intensity for the effective period was calculated dividing total amount of rainfall by duration of rainfall during the cyclonic period (as given in column 2); SD, Standard deviation; CV, Coefficient of variation.

NORTH EAST INDIA

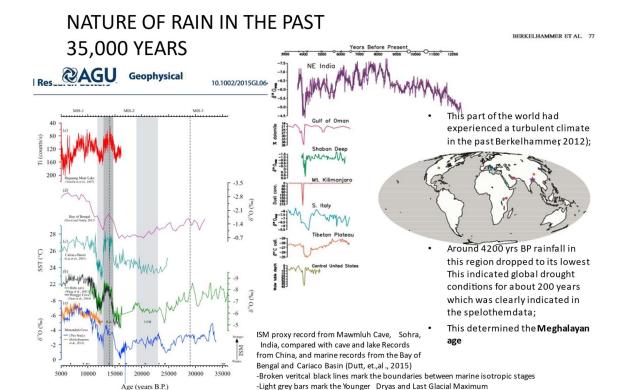

The inhabitants

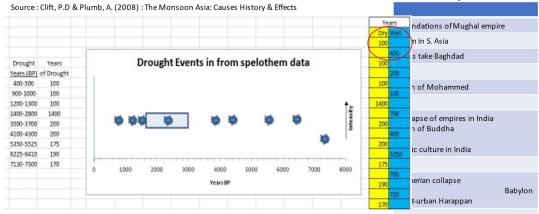


North East India: Population



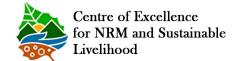
UNDERSTANDING PAST CLIMATE



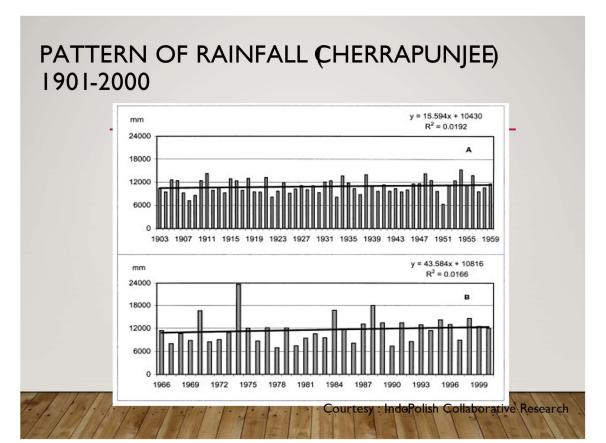


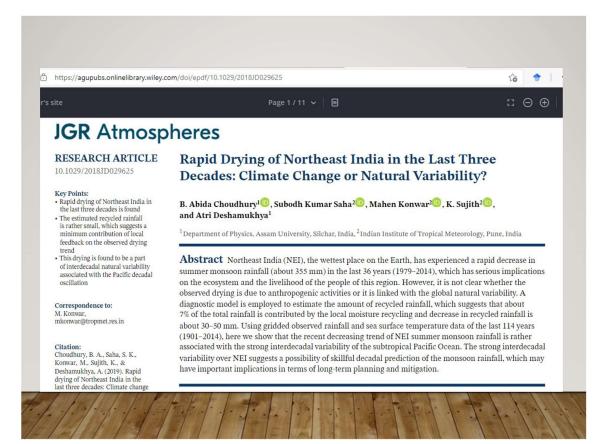
-Dark grey bar indicates the Bølling - Allerad period

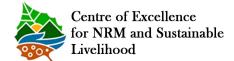
Asian history is highly linked to climate

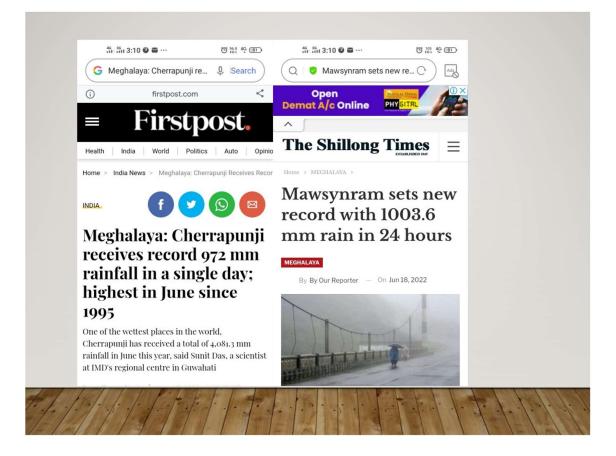

Increase of sedimentation in the Bengal delta between 7-9 ky corroborates with intense rainfall and with continuous seismic activity. Several intense droughts amidst periods of active monsoonshave been deciphered from spelothem data, the latest three being within 1500 years from today (Clift & Plumb, 2009)

Sumerian wars
Urban Harappan
Sumerian zenith @ Ur
Birth of Hinduism
Anarta Civilization (India)
Uruk Civilization
Loteshwar culture (India)
Farming in Mesopotamia
Ubaid Civilization









Climate change vulnerability profiles for North East India

N. H. Ravindranath^{1,4}, Sandhya Rao², Nitasha Sharma¹, Malini Nair¹, Ranjith Gopalakrishnan¹, Ananya S. Rao¹, Sumedha Malaviya¹, Rakesh Tiwari¹, Anitha Sagadevan¹, Madhushree Munsi¹, Niharika Krishna¹ and Govindasamy Bala³

Centre for Sustainable Technologies, and Directo Centre for Classis Change, Indian Institute of Science, Bangalore 560 012, India Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India

WATER VULNERABILITY

Aimed at providing a quantitative Approach to assess vulnerability of three key sectors to climate change.

Water Vulnerability Index

High vulnerability: Goalpara, Dhubri, Bongaigaon, Kamrup, Sonitpur, Kamrup, Nalbari (Assam)

W.Garo Hills, E.Garo Hills, RI Bhoi (Meghalaya)

Low vulnerability DibangValley, LowerDibang, ValleyAnjaw (Arunachal Pr) Karimganj Cachar, N.C. Hills (Assam) Ukhrul (Manipur), Tawang (Arunachal Pr)

Forest Vulnerability Index

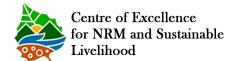
Most Vulnerable in Bisnupur (Manipur); Tirap (Arunnachal Pr.)

In future scenario: Several mixed changes are seen

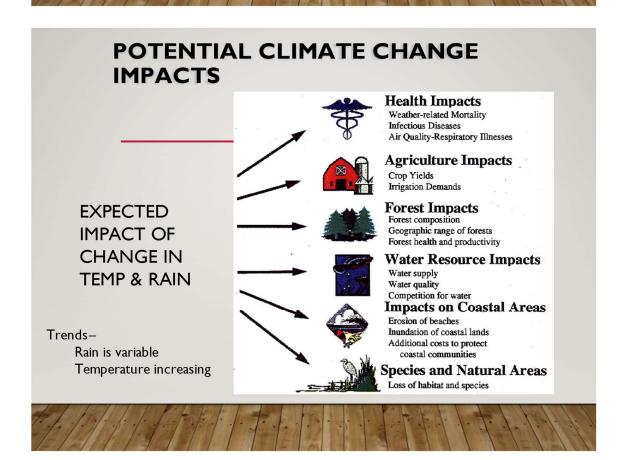
Agriculture Vulnerability Index

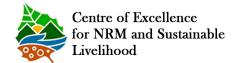
Overall vulnerability decreased in future scenario

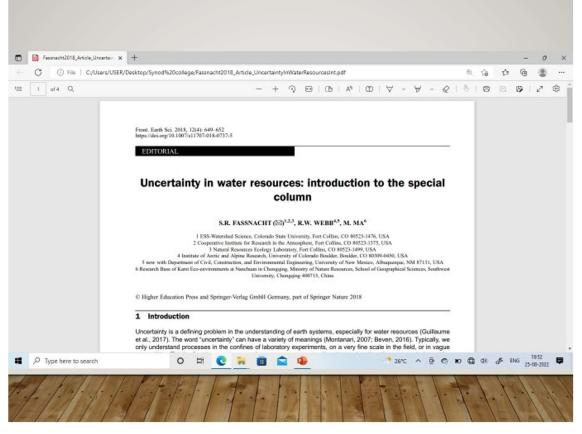
High vulnerabilty: Tirap, W. Siang Changlang (Arunachal Pr.)

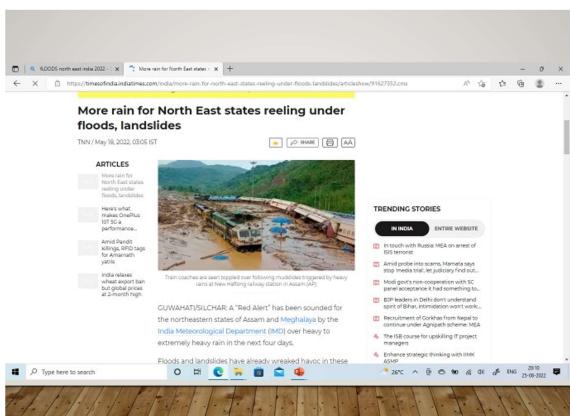

Dibrugarh (Upper Assam), Nalbari (Lower Assam)

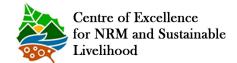
Water vulnerability is not only for the areas indicated above but also for the whole state of Meghalaya with specific mention to the southern region

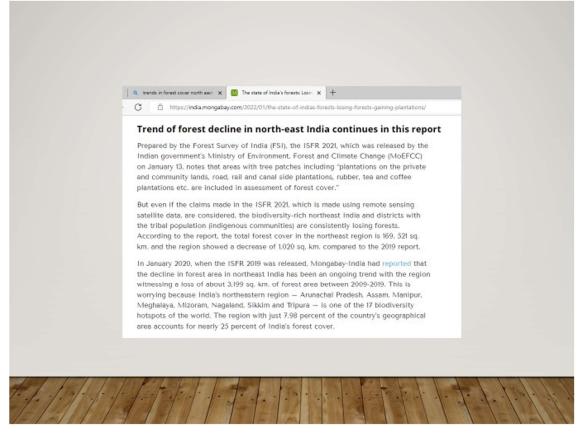


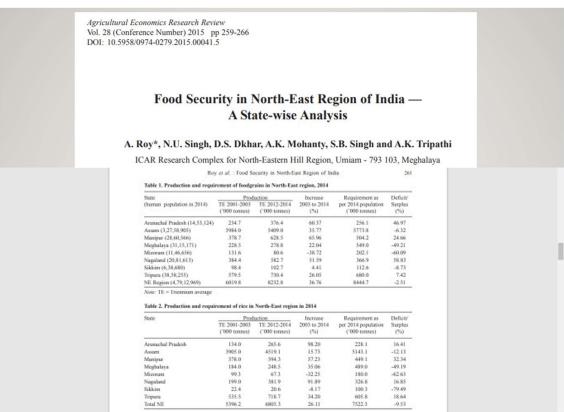

THE MOST IMPORTANT FACTOR THAT WOULD ATTRACT CHANGE IS CLIMATE



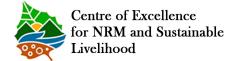




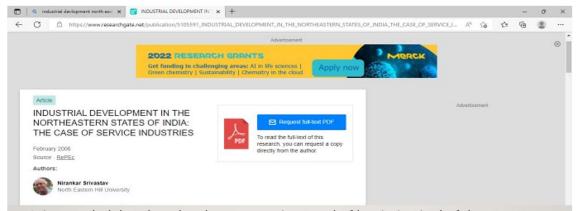




- 28°C ∧ Di 🖎 🐿 Ø QN 🖋 ENG .03:19 📮

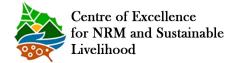

O H C 들 🙉 🖒 😘

Type here to search

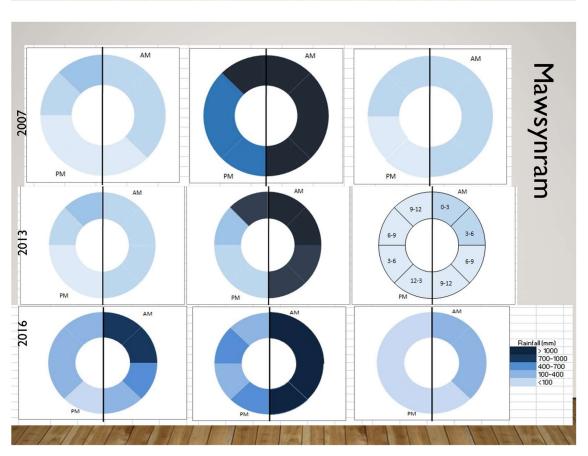


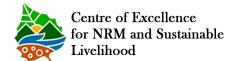
It is revealed that there has been a growing trend of 'tertiarization' of the structures of production. The emergence of the service sector in a big way draws the attention to examine further the possibility of its 'catalytic' role in the economic development of the region.

The inter-state comparative analysis suggests that the states adopting a more focused approach towards economic growth by implementing state level economic reforms policies forge ahead in future to provide better employment and income generating opportunities, and thus, improve the standard of living of their people. For balanced and sustainable economic development, NE States have to adopt and implement a more focused growth oriented policy measure.


Population in N. E. India (2022)

State	Population	Density/km ²
Arunachal Pradesh	13,83,727	•
Assam	3,12,05,576	397
Manipur	25,70,390	122
Meghalaya	29,66,889	132
Mizoram	10,97,206	52
Nagaland	19,78,502	119
Sikkim	6,10,577	86
Tripura	36,73,917	350
	45,486,784	



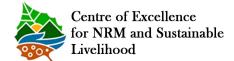

Rai	Mawsynram				
Year	Pre-Monsoon Precipitation (mm)	Monsoon Precipitation (mm)	Post- Monsoon Precipitation (mm)	Max. Precipitation Month (mm)	Max Precipitation hour (mm)
2007	1579	10670 (80%)	1003.5	5030 (July-)37%	285.0 (July7-8:00 hrs)
2013	1637	6124 (74%)	458	2000 (July) 24%	244.0 (June3-4:00 hrs)
2016	2322.5	6908.5 (70%)	582	4363 (July) 44%	351.0 (July4-5:00 hrs)
					Sohra
Year	Pre-Monsoon Precipitation (mm)	Monsoon Precipitation (mm)	Post- Monsoon Precipitation (mm)	Max. Precipitation Month (mm)	Max Precipitation hour (mm)
2007	1911	10028 (78%)	920	4585.5 (July)35%	319.5(8:009:00 hrs)
2013	1942.5	5198.5 (68%)	518.5	1933 (July) 25%	182 (July4-5:00 hrs)
2016	2339.5	6189.5 (68%)	573	3711 (July)-40%	295.5 (4:005:00 hrs)
					Pynursla
Year	Pre-Monsoon Precipitation (mm)	Monsoon Precipitation (mm)	Post- Monsoon Precipitation (mm)	Max. Precipitation Month (mm)	Max Precipitation hour (mm)
2007	1046.5	8154 (80%)	841.5	3242.5 (July-)32%	202.5 (July 78:00 hrs)
2013	1583	5080 (68%)	0	1772 (July) 22%	271 (July5-6:00 hrs)
2016	3269.5	5425.5 (58%)	574.5	3276.5 (July-)35%	213 (July 56:00 hrs)

WHAT CAN CAUSE FLASH FLOOD AT AN ELEVATION OF 1800MASL – RECENT EXTREME EVENTS ???

MAY 2011

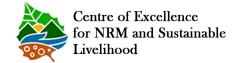
JUNE 2018

Intense	2007			2016			Other storms					
Rainfall events	Date	Time	Intensity (mm/hr)	Daily Max (mm)	Date	Time	Intensity (mm/hr)	Daily Max (mm)	Date	Time	Intensity (mm/hr)	Daily Max (mm)
Mawsynram	18/07	I-2 AM	85.5	761	19/07	4-5 AM	87	449	20/04/07	10-11 PM	102	160
Sohra	18/07	3-4 PM	78.5	625	19/01	4-5 AM	87	448.5	16/06/07	I-2 PM	69	478.5
Pynursla	25/07	3-4 PM	52.5	515.5	20/07	9-10 AM	44.5	334	23/04/16	10-11 PM	130	301

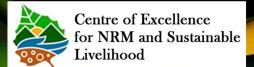

Some large volume precipitation @Sohra								
16 June 1995	1563 mm							
14 June 1876	1036 mm							
July 1861 (31 days)	9300 mm							
June & July 1861 (2 months)	12767 mm							
May - July 1861 (3 months)	16369 mm							
June – Sept 1974 (4 months)	18876 mm							
Source: Starkel, L., et.,al. (2004): Rainfall, Runoff and Soil Erosion in the globally humid areaCherrapunii region. India. IGIPZ. PAN. Warsaw								

WHAT WE CAN UNDERSTAND TODAY ??

- The economy of the state is highly climate dependent which needs a serious thought;
- Atmospheric disturbances in the Bay of Bengal & Arabian Sea, directly or indirectly affects the state depending largely on the character & season;
- The occurrence of extreme events calls for a much more refined data collection and impact of such events;
- Shifts in the distribution of rain and increasing temperature are disturbing points to be noted
- Good tree canopy cover in available areas need to be strengthened to reduce vulnerability as well as generate income


Thank You

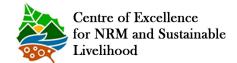
Acknowlegements: Indo-Polish collaboration Indo-Japan Collaborative Research Contributions of PhD Scholars North Eastern Hill University


FOREST MANAGEMENT PLAN

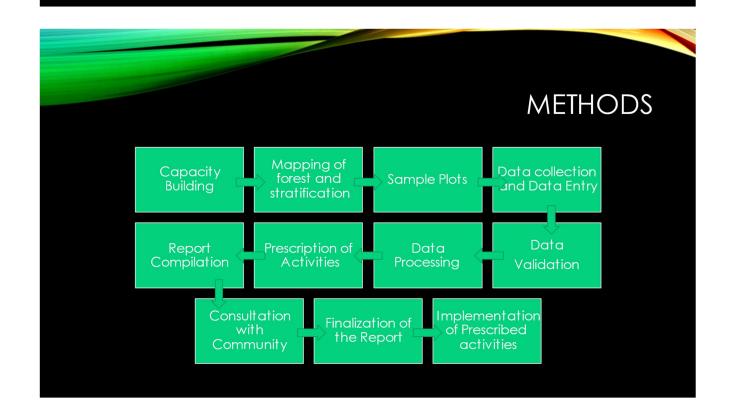
Application of RS/GIS in Forest Management Plan On 18th November, 2022

Presented by:

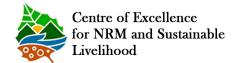
Stebanshon Mylliemngap Assistant Manager GIS


INTRODUCTION

- Forest Management Plan(FMP) is an important and unique initiative under the Community Led Landscape Management Project (CLLMP)
- FMP is one of the objectives of CLLMP
- Centre of Excellence (CoE) has taken up the task for preparation of FMPs in all the 400 villages selected under CLLMP
- Release of FMP Reports for 51 villages by Hon'ble CM of Meghalaya on Environment Week of 2022



OBJECTIVES


- Sustainable management of the forest and natural resources within the forest
 - Through generation of quantified estimates such as growing stocks, carbon yield, trees of different girth classes etc
- Conservation of forest and biodiversity
 - By developing a suitable prescription of practices
 - Sustained yield
- Base document which later can be developed as a approved "Working Scheme"

METHOD-CAPACITY BUILDING

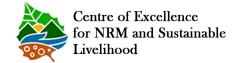
- Capacity building of the Master Trainers (75 Nos.)
- Master Trainer in -turn trained 1200 V CFs in the state
- Capacity Building of the CoE Staffs on Data Processing
 - In house by Director of CoE

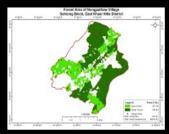
SI. No.	Organisation	No. of MTs
1	CLLMP	33
2	MBDA GIS	6
3	JICA	6
4	KHADC	5
5	JHADC	5
6	GHADC	20

METHOD-CAPACITY BUILDING

- Capacity Building of the Village Community Facilitators (VCFs)
- Capacity building of the Data Entry Operators
 - 11 DEOs have been trained

SI No	District	VNRMCs	No. of VCFs Trained
1	EGH	30	90
2	EJH	30	90
3	EKH	93	279
4	NGH	20	60
5	RB	30	90
6	SGH	23	69
7	SWGH	49	147
8	SWKH	40	120
9	WGH	40	120
10	WKH	25	75
11	WJH	20	60
	Total	400	1200



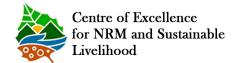


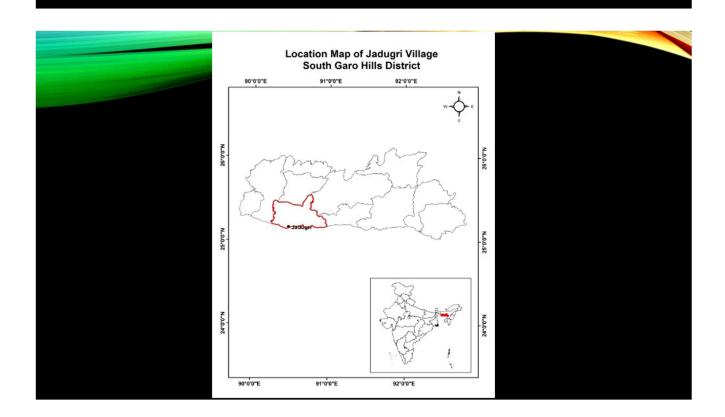
TOPICS OF TRAINING RELATED TO GIS

- Map Reading
- GPS demarcation of Sample plots
- Reaching to the sample plots (goto)

METHOD-GIS

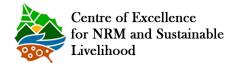
- Role of GIS in FMP
 - Training of the Master trainers and VCFs
 - Generation of Village Boundary maps
 - Stratification of Forest
 - Generation of Forest Cover Maps demarcating the community forests
 - Generation of Sample plots
 - Analysis of forest carbon and Estimation of forest carbon for each village
 - Generation of Forest Types for each village as per the Champion and Seth Classification (1968)

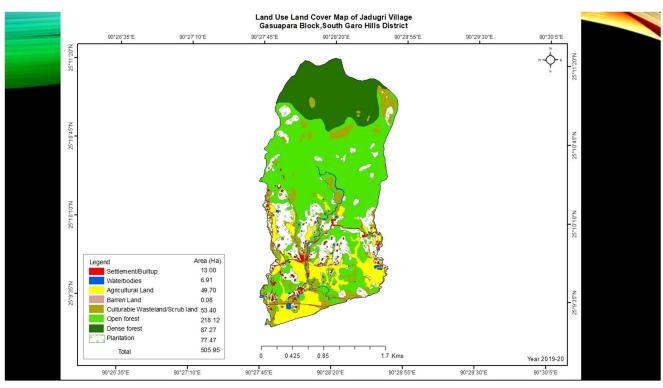


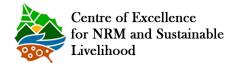


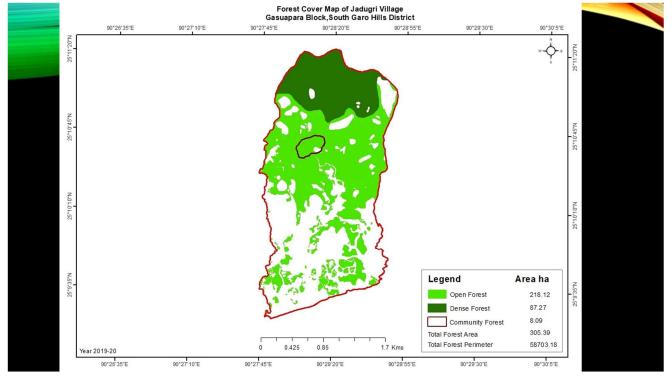
GIS SUPPORT FOR FMP

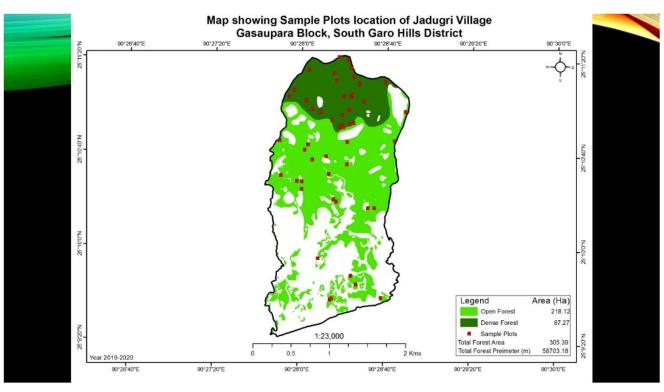
- Location Map
- Boundary Map
- LULC Map
- Forest cover overlay with Sample Plots and Community Forest Map
- Statistics:
 - Area of Boundary, Area of Forest, Forest Type
 - Determining detected forest fire points in each village using FSI data
 Average Altitude
 Forest Blanks

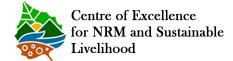

 - Average SlopeCulturable waste Land outside Forest Area
 - Distance from nearest road from District HQ, District Road, State Highway and National Highway







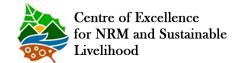




	GIS Statistics for FMP															
Bloc	ck	Villa	ıge	Latit	ude	Longit	ude B	oundo	ary A	Area	Averd	ıge	Altitude (m) .	Aver	rage Slope (°)
Saipu	ıng	Mynt	hlu	25.4	1834	92.512	588	117	74.46			9	72.43			7.6
Op Forest	(Ha) Fore	ense est (Ho	1) (Forest (Ha) 343.6	Fo	eter of To rest (m) 35613.62		Fore Blank 450	(ha)		side	ole Wastel e Forest (he	200		Area under terbodies (ha)
F	orest	Fire I	Points	(nos.	.)	F	orest Typ	oe (FS	1)				Distanc	e (Kms)	fror	n
2016 :	2017	2018	2019	2021	Total	Assar	m Sub Tro Fore	300	l Pine		strict H	2	Nearest District Road	Neare State Highw	е	Nearest National Highway
0	2	0	4	0	6	Cacho	ar Tropico fore		ergree		24.09		0.54	15.6	1	6.23
Distric	Dominant F trict Village Type (FS			DF Carbon	O Cark	-	Villag DF	e Villa		Forest Carbon in Tonnes	Total Forest Area (Ha)	-	orest Carbon Per a (C tonnes/ha)			
EGH	At	Dano tewa	T-10	Sem	ni Everç Fores		136	75.	.9	36.7	252.	43	24153.74	289.1		83.54816697

METHOD-INVENTORY

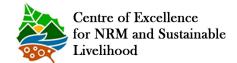
- Procurements of Equipment for the conducting field works for FMP (105 Sets)
- Sample plots maps generated by GIS were shared with the respective villages
- VCFs were instructed to reach the plots with the help of GPS
- Plots were set as per the FMP guidelines
- Measurement of Girth, clearbole height and total height of the trees were carried out using the equipment as per the guidelines in the FMP manuals
- Data were recorded in the given format
- Submission of the data at the DPMUs
- Time to time review of the progress both through online and physical



METHOD-DATA COLLECTION & DATA VALIDATION

- Collection of Inventory data and validation at district level
- Collection of data at CoE
- Data entry into the prepared format
- Data validation based on the set criteria
- Errors were notified to the respective DPMUs for correction and resubmission of rectified data
- Re-entering of rectified data

METHOD-DATA PROCESSING

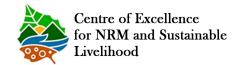

- Finding out of dominant species
- Volume of the each trees (using the quarter girth formula)
- Rotation of the dominant species
- Sustainable and prescribed yield of the dominant species
- Re checking of the processed data

METHOD - REPORT WRITING

- Drafting of the report
- · Proof reading of the draft report
- Framing of the prescription of activities village wise and Inclusion of the same in the report for all the villages
- Consultation with VNRMCs on the FMP prepared by SPMU
- Finalization of the FMPs on the basis of the inputs and suggestions given by the communities
- Printing of the FMPs
- Distribution of the FMPs to the VNRMCs
- Allocation of funds for prescribed activities under FMP
- Regular monitoring of activities as prescribed in the FMP by
- the DPMU

IMPLEMENTATION OF PRESCRIBED **ACTIVITIES**

- · Sustainable Yield from forest
- Regeneration of the existing forest
 Assisted Natural Regeneration(ANR)
 Filling up of the Forest Blanks
- Afforestation of the Degraded Lands
- Establishment of Community Nursery
- Bamboo Management
- Forest Fire management and control
- NTFP Management
- Eradication of Invasive Species
- Pest & Disease Management
- Wildlife Management
- Soil & Water Conservation
- Registration of Forest & Plantations with Forest Department



OUTCOME

- Sustainable yield for each village
- Prescribed yield for each village
- Density of forest (in terms of number of trees)
- Prescription of activities to conserve and protect forest
- Base document to develop an approved "Working Scheme"
- Current Target (Under CLLMP)= 400 villages
 - Inventory completed = 400
 - Data entry completed = 400
 - Data processing completed = 400
 - Report writing completed = 370

CHALLENGES

Human Resources

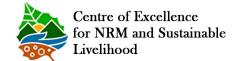
• Capacity building in terms of technicality (Data accuracy)

Ownership of the forest

• (Private Owners not allowing to carry out inventory work at their forests)

Misunderstanding

• Community had misunderstanding with regards to FMP, as they thought if they allow to do inventory work, Government will take over their forest.


Handling of equipment

 Even after training, it was found that VCFs were not confident in using the equipment

Creating Boundaries of all the Villages in Meghalaya with the help of GPS and Google Earth Images for Natural

Resource Management

Presented by Fettleman Dohling

Manager GIS MBDA/MBMA

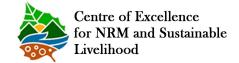

Content

- 1. Introduction
- 2. Objective
- 3. Methodology
- 4. Flow Chart
- 5. Budget
- 6. Achievement
- 7. Training Pictures and Sample Boundary Map
- 8. Conclusion

Introduction

- There are over 6500+ villages in the Stateboundaries of the villages do not exist and cadastral survey has not been done.
- Natural Resource Management planning and interventions, boundaries of the villages are essentially required.
- GIS lab of MBDA has undertaken the exercise of capturing the boundaries of the villages with the help of local people and VCFs who has knowledge about the village boundaries.
- Training to VCFs from the villages for capturing village boundaries using GPS and Google Earth images has been imparted and they are asked to traverse the boundary and capture the same on GPS. The GPS data is then downloaded and processed by overlaying the same on Google Earth images at MBDA GIS lab for finalizing the village boundaries.

Contd...

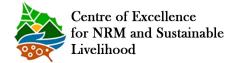

Introduction

- Such boundaries of villages may not serve the purpose for administrative or legal matters but they are good enough for the purpose of Natural Resource Management.
- In this manner, MBDA/MBMA GIS lab had been collecting NRM village boundaries under CLLMP - 400, MLAMP - 1350 and JICA - 450. Thus, 2200 total number of villages has been captured by MBDA/MBMA GIS Lab for NRM boundaries. Still about 4785 villages boundaries (approx.) are yet to be collected from the ground following the above methodology.
- These boundaries will be useful not only in the externally aided projects but also all villages resource management planning and implementation of different activities being executed by different Departments.
- It is therefore proposed to create boundaries of the remaining 4785 villages (approximately). The budget estimate for the same is proposed for sanction.
- Issuing of Log book for fieldwork/boundary collection record and Letter.

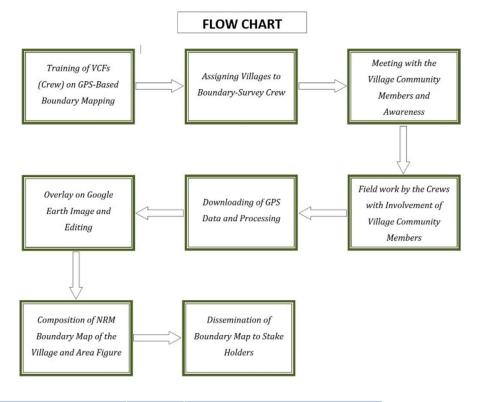
Objectives

- 1. Capturing Village boundaries of Meghalaya with the help of GPS and Google Earth Images for Natural Resource Management
- 2. Impart training to VCFs for capturing the boundaries using GPS and Google Earth images.

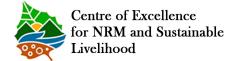
Methodology


The above-mentioned objective can be achieved through the following steps and procedures:

- 1. Providing participatory training programme for the VCFs in using GPS.
- 2. Following this, the 4785 (approx) village NRM boundaries will be captured by the VCFs along with the village locals who have knowledge about the village boundary.
- 3. Lastly, the GPS data will be shared by the VCFs and later can be downloaded and processed by GIS lab, MBDA/MBMA. Village boundary maps that have been composed will be recycled back to the village communities which then can be used for any natural resource management planning and implementation projects.
- 4. Superimpose on Google Earth image to create satellite imagery map of the village.



SI.	Items	Year I	Remarks
No			OVERTICAL CONTROL
1	One Day Refresher Training for VCF (in batches of 40 will be conducted Training Programmes @ 30,000 per programme	150,000	200 VCFs who have good skills in using GPS will be selected for this exercise.
2	Boundary Survey of Villages (VNRM Boundaries). Average 2 days for on village involving 6 mdays of work for each village, @ 500 per person dayi.e.INR3000 per village (average 4,785 villages in 3 Years i.e. 1,595 villages per year.	4,785,000	200 selected and trained VCFs will form and lead 200 crews. Each crew will comprise 1 VCF and 2 local youth from the village under survey. There are approximately 6986 Villages in the State out of which boundaries of 2,200 Villages have been created by MBDA. Thus boundaries of remaining 4,785 needs to be created.
3	Articles to facilitate Field Survey worder each crew Back pack 1 no @ 400 Water Bottle Bos@ 300 Measuring tape @ 400 Dao @ 400 First Aid Med @ 300 Total 1,800 for each crew	360,000	The expenditure provides the set of articles for all the 200 crews
4	Travel Expenses of VCFs and Officia L.S.	400,000	-
5	Miscellaneous	200,000	-
	Total	5,895,000	


Budget

Contd...

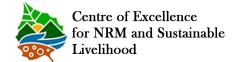
	Wages of VCFs and Village personnel for each District based on No. of villages										
SI.no			No. of Villages to be selected by each	Daily Wages Rate Per Vill Bnd Mapping: 1VCF + 2 Vill personnel (Total 3 people) @ Rs 500 each * 2 days (avg)	Amount to be disbursed to each District on Daily Wages for Village Bnd Mapping (Year 1)						
1	WKH	13	104	3000	312000						
2	HLW	10	80	3000	240000						
3	WGH	20	160	3000	480000						
4	SWKH	20	160	3000	480000						
5	SWGH	24	192	3000	576000						
6	SGH	11	88	3000	264000						
7	RB	15	120	3000	360000						
8	NGH	10	80	3000	240000						
9	EJH	15	120	3000	360000						
10	EGH	15	120	3000	360000						
11	EKH	47	371	3000	1113000						
	Total	200	1595	3000	4785000						

	Travel Expenses per District based on No. of VCFs										
Sl.no	District	No. of VCFs	Percentage of total VCFs (%)								
1	WKH	13	6.5	26000							
2	WJH	10	5	20000							
3	WGH	20	10	40000							
4	SWKH	20	10	40000							
5	SWGH	24	12	48000							
6	SGH	11	5.5	22000							
7	RB	15	7.5	30000							
8	NGH	10	5	20000							
9	EJH	15	7.5	30000							
10	EGH	15	7.5	30000							
11	EKH	47	23.5	94000							
	Total	200	100	400000							

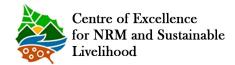
Total Amount to be disbursed to each District (Wages + TE) Year 1										
Sl.no	District	Amount to be disbursed to each District for Daily Wages of Village Bnd Mapping	Amount to be disbursed to each District For Travel expenses for VCFs for the activity	Total Amount to be Disbursed to District						
1	WKH	312000	26000	338000						
2	WJH	240000	20000	260000						
3	WGH	480000	40000	520000						
4	SWKH	480000	40000	520000						
5	SWGH	576000	48000	624000						
6	SGH	264000	22000	286000						
7	RB	360000	30000	390000						
8	NGH	240000	20000	260000						
9	EJH	360000	30000	390000						
10	EGH	360000	30000	390000						
11	EKH	1113000	94000	1207000						
	Total	4785000	400000	5185000						

Achievement

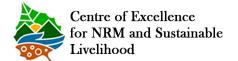
Target till Dec 2022: 4000 s

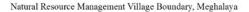

Boundaries Collected II Nov 19th 332nos

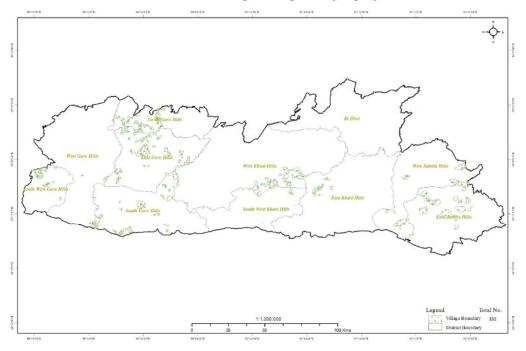
Currently Verifying and reverting back to Districts for corrections

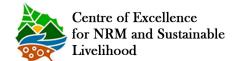


Sample Boundary Map

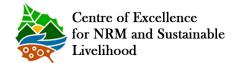




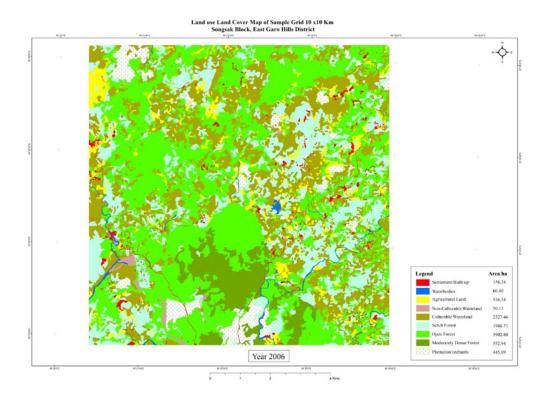


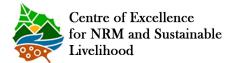

Conclusion

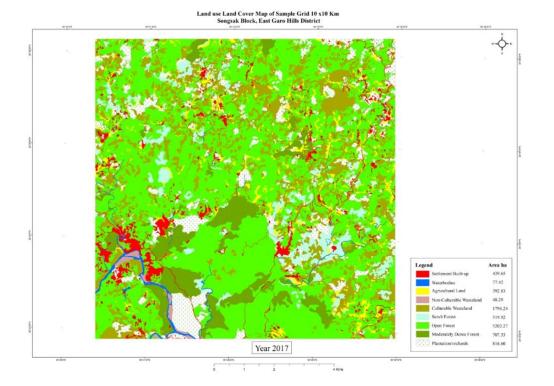
- By this exercise, a highly important data need of the State i.e. village boundary of natural resource management is being fulfilled.
- Since the boundary mapping is being done by the village youths (VCFs), the exercise is leading to large scale capacity building.
- After completion of the project, the natural resource management boundary of the village can be shared to the users under data sharing protocol.

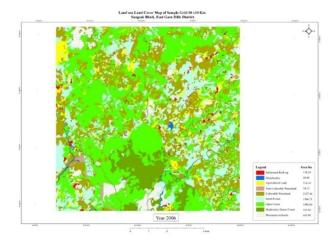

Presented by: Norita Nongbet Sohlang Assistant Manager (GIS)

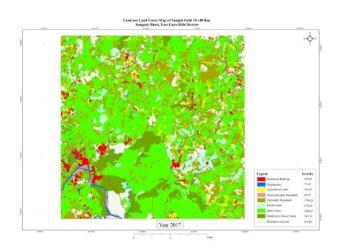
- Land use/ Land cover is an important component in understanding the interactions of the human activities with the environment and thus it is necessary to monitor and detect the changes to maintain a sustainable environment.
- Land use/Land cover (LULC) changes are major issues of global environment change.
- The satellite remote sensing data with their repetitive nature have proved to be quite useful in mapping land use/land cover patterns and changes with time.
- Quantification of such changes is possible through GIS techniques even if the resultant spatial datasets are of different scales/ resolutions (Sarma et al., 2001).
- Such studies have helped in understanding the dynamics of human activities in space and time.

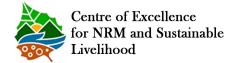


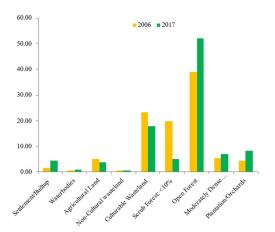

- The study was carried out through Remote Sensing and GIS approach using Google earth imagery of and IRS -P6-LISS-IV of 2006 and 2017.
- A 10x10 km grid is created in the three districts of Garo hills region for the purpose of studying the change in the past ten years.
- Ten year time period of 2006 -2017 was selected for change analysis.







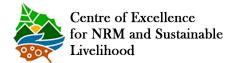




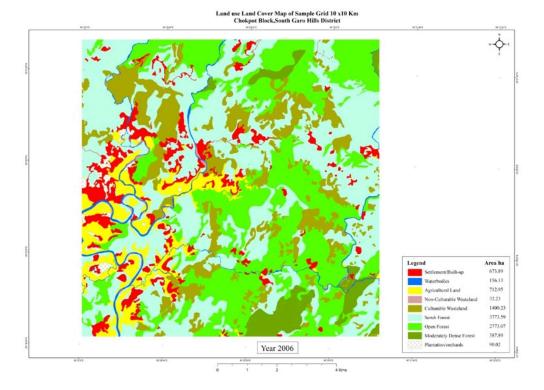
LULC CLASS Area in ha Area in sq km Percentage %									
Settlement/Built up	158.34	1.58	1.58						
Water bodies	60.40	0.60	0.60						
Agricultural Land	516.14	5.16	5.16						
Non-Cultural wasteland	50.13	0.50	0.50						
Culturable Wasteland	2327.46	23.27	23.27						
Scrub Forest: <10%	1986.71	19.87	19.87						
Open Forest	3902.80	39.03	39.03						
Moderately Dense Forest	552.94	5.53	5.53						
Plantation/Orchards	445.09	4.45	4.45						
Total	10000.00	100.00	100.00						

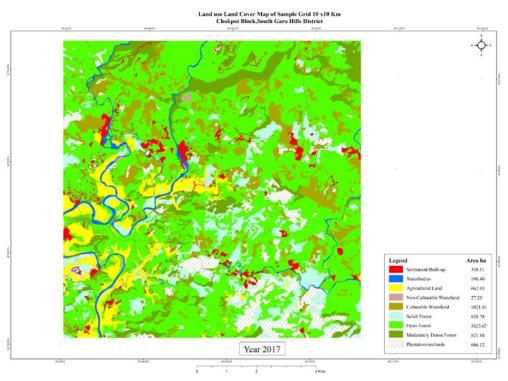
LULC_CLASS	Area in ha	Area in sq km	Percentage %
Settlement/Built up	439.65	4.40	4.40
Water bodies	77.42	0.77	0.77
Agricultural Land	392.83	3.93	3.93
Non-Cultural wasteland	48.29	0.48	0.48
Culturable Wasteland	1796.24	17.96	17.96
Scrub Forest: <10%	519.92	5.20	5.20
Open Forest	5202.27	52.02	52.02
Moderately Dense Forest	707.33	7.07	7.07
Plantation/Orchards	816.06	8.16	8.16
Total	10000.00	100.00	100.00

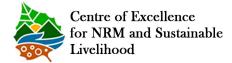
Change in LULC in 10x10 km Sampl&rid Songsak Block, East Garo Hills (Area in ha)

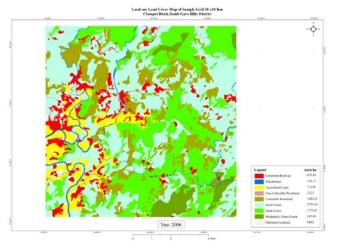

Change in Lore in 19710 km Samporia Songsak block, East Garo inns (Area in na)							
LULC CLASS	2006	2017	Change inha	Changein Percentage %			
Settlement/Built up	158.34	439.65	281.31	177.67			
Water bodies	60.40	77.42	17.03	28.19			
Agricultural Land	516.14	392.83	-123.31	-23.89			
Non-Cultural wasteland	50.13	48.29	-1.84	-3.67			
Culturable Wasteland	2327.46	1796.24	-531.22	-22.82			
Scrub Forest: <10%	1986.71	519.92	-1466.79	-73.83			
Open Forest	3902.80	5202.27	1299.47	33.30			
Moderately Dense Forest	552.94	707.33	154.39	27.92			
Plantation/Orchards	445.09	816.06	370.98	83.35			
Total	10000.00	10000.00	0.00				

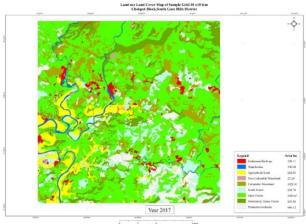
- Settlement increased by 177.67 %
- Plantation/orchards increased by 83.35%
- Agricultural land decreased by -23.89%
- Open Forest increased by 33.30%
- Moderately Dense Forests increased by 27.92%
- Area of Water Bodies increased by 28.19%

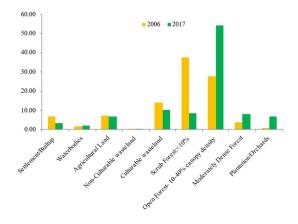




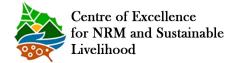


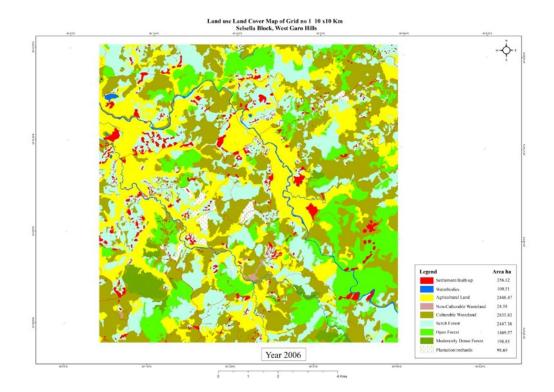




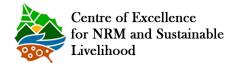


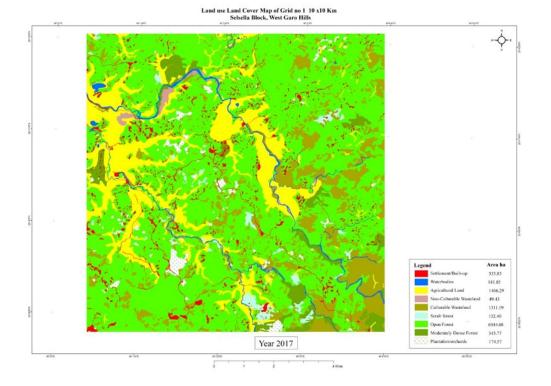
LULC CLASS	Area Ha	Area in sq km	Percentage %
Settlement/Builtup	673.89	6.74	6.74
Water bodies	156.13	1.56	1.56
Agricultural Land	712.95	7.13	7.13
Non-Culturable wasteland	32.23	0.32	0.32
Culturable wasteland	1400.23	14.00	14.00
Scrub Forest:<10%	3773.59	37.74	37.74
Open Forest 10-40% canopy density	2773.07	27.73	27.73
Moderately Dense Forest	387.89	3.88	3.88
Plantation/Orchards	90.02	0.90	0.90
TOTAL	10000.00	100.00	100.00

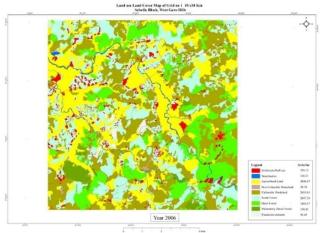

LULC CLASS	Area Ha	Area in sq km	Percentage %
Settlement/Builtup	338.11	3.38	3.38
Water bodies	190.40	1.90	1.90
Agricultural Land	662.03	6.62	6.62
Non-Culturable wasteland	27.20	0.27	0.27
Culturable wasteland	1021.81	10.22	10.22
Scrub Forest:<10%	838.78	8.39	8.39
Open Forest 10-40% canopy density	5433.67	54.34	54.34
Moderately Dense Forest	821.88	8.22	8.22
Plantation/Orchards	666.12	6.66	6.66
TOTAL	10000.00	100.00	100.00

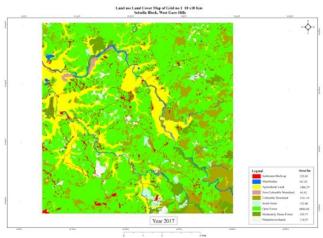


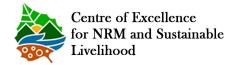
Change in LULC in 10x10 km Sampl&rid Chokpot Block, South Garo Hills (Area in ha)						
LULC CLASS	2006	2017	Change in ha	Change in Percentage%		
Settlement/Built up	673.89	338.11	-335.77	-49.83		
Water bodies	156.13	190.40	34.27	21.95		
Agricultural Land	712.95	662.03	-50.93	-7.14		
Non-Culturable wasteland	32.23	27.20	-5.02	-15.59		
Culturable wasteland	1400.23	1021.81	-378.42	-27.03		
Scrub Forest:<10%	3773.59	838.78	-2934.81	-77.77		
Open Forest 10-40% canopy density	2773.07	5433.67	2660.60	95.94		
Moderately Dense Forest	387.89	821.88	433.99	111.88		
Plantation/Orchards	90.02	666.12	576.09	639.93		
TOTAL	10000.00	10000.00	0.00			

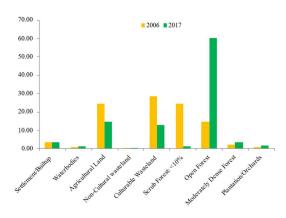

- Plantation increased by 639.93%
- Agricultural land decreased by -7.14%
- Moderately Dense Forest increase by 111.88%
- Open Forest increased by 95.94%
- Area of Water bodies increased by 21.95%





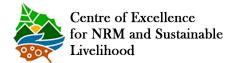




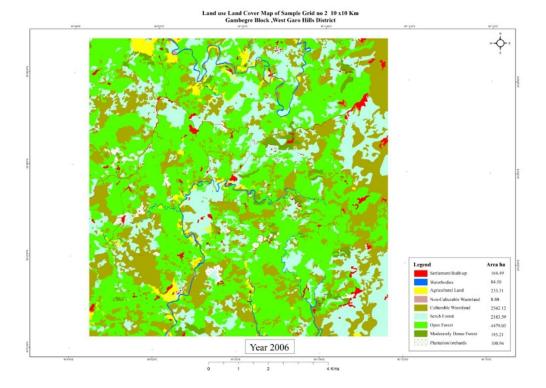


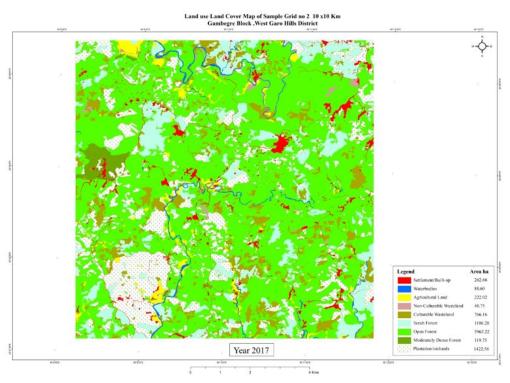
LULC_CLASS	Area ha	Area in sq km	Percentage %
Settlement/Builtup	356.12	3.56	3.56
Water bodies	100.51	1.01	1.01
Agricultural Land	2448.47	24.48	24.48
Non-Cultural wasteland	24.58	0.25	0.25
Culturable Wasteland	2855.83	28.56	28.56
Scrub Forest: <10%	2447.38	24.47	24.47
Open Forest	1469.57	14.70	14.70
Moderately Dense Forest	198.85	1.99	1.99
Plantation/Orchards	98.69	0.99	0.99
Total	10000.00	100.00	100.00

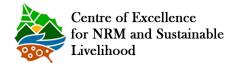
LULC_CLASS	Area ha	Area in sq km	Percentage %
Settlement/Builtup	335.83	3.36	3.36
Water bodies	141.85	1.42	1.42
Agricultural Land	1466.29	14.66	14.66
Non-Cultural wasteland	49.43	0.49	0.49
Culturable Wasteland	1311.19	13.11	13.11
Scrub Forest: <10%	132.40	1.32	1.32
Open Forest	6044.68	60.45	60.45
Moderately Dense Forest	343.77	3.44	3.44
Plantation/Orchards	174.57	1.75	1.75
Total	10000.00	100.00	100.00

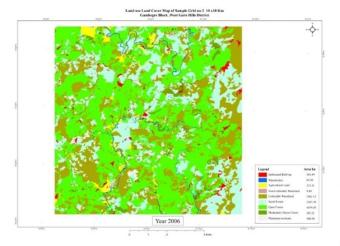

Change in LULC in 10x10 km Sample Grid 1 Selsella Block, West Garo Hills (Area in ha)					
LULC CLASS	2006	2017	Change inha	Changein Percentage%	
Settlement/Built up	356.12	335.83	-20.29	-5.70	
Water bodies	100.51	141.85	41.34	41.13	
Agricultural Land	2448.47	1466.29	-982.18	-40.11	
Non-Cultural wasteland	24.58	49.43	24.85	101.09	
Culturable Wasteland	2855.83	1311.19	-1544.65	-54.09	
Scrub Forest: <10%	2447.38	132.40	-2314.98	-94.59	
Open Forest	1469.57	6044.68	4575.11	311.32	
Moderately Dense Forest	198.85	343.77	144.92	72.88	
Plantation/Orchards	98.69	174.57	75.88	76.89	
Total	10000.00	10000.00			

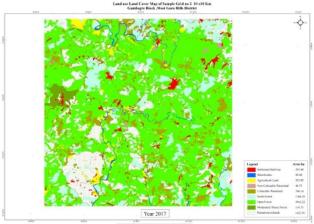
- \bullet Plantation/Orchards increased by 76.89 %
- Agricultural land decreased by 40.11%
- Open Forest increased by 311.32%
- Moderately Dense Forest increased by 72.88%
- Area of Water bodies increased by 41.13%

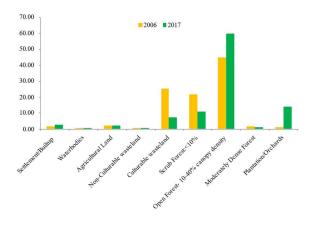




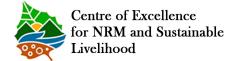








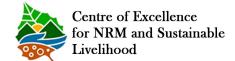
LULC CLASS	Area ha	Area in sq km	Percentage %
Settlement/Builtup	164.49	1.64	1.64
Water bodies	84.50	0.84	0.84
Agricultural Land	233.31	2.33	2.33
Non-Culturable wasteland	8.80	0.09	0.09
Culturable wasteland	2562.12	25.62	25.62
Scrub Forest:<10%	2183.59	21.84	21.84
Open Forest 10-40% canopy density	4479.03	44.79	44.79
Moderately Dense Forest	183.21	1.83	1.83
Plantation/Orchards	100.96	1.01	1.01
TOTAL	10000.00	100.00	100.00


LULC CLASS	Area ha	Area in sq km	Percentage %
Settlement/Builŧup	262.66	2.63	2.63
Water bodies	88.60	0.89	0.89
Agricultural Land	222.02	2.22	2.22
Non-Culturable wasteland	48.75	0.49	0.49
Culturable wasteland	766.16	7.66	7.66
Scrub Forest:<10%	1106.28	11.06	11.06
Open Forest 10-40% canopy density	5963.22	59.63	59.63
Moderately Dense Forest	119.75	1.20	1.20
Plantation/Orchards	1422.56	14.23	14.23
TOTAL	10000.00	100.00	100.00

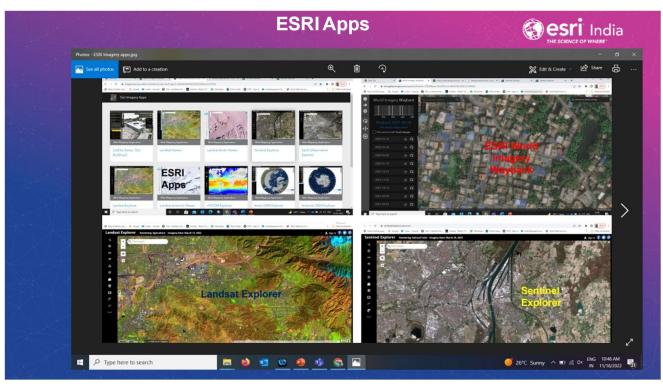
Change in LULC in 10x10 km Sample Grid 2 Gambegre Block, West Garo Hills (Area in ha)					
LULC CLASS	2006	2017	Change inha	Changein Percentage%	
Settlement/Built up	164.49	262.66	98.17	59.68	
Water bodies	84.50	88.60	4.10	4.85	
Agricultural Land	233.31	222.02	-11.29	-4.84	
Non-Culturable wasteland	8.80	48.75	39.95	453.68	
Culturable wasteland	2562.12	766.16	-1795.96	-70.10	
Scrub Forest:<10%	2183.59	1106.28	-1077.30	-49.34	
Open Forest 10-40% canopy density	4479.03	5963.22	1484.19	33.14	
Moderately Dense Forest	183.21	119.75	-63.46	-34.64	
Plantation/Orchards	100.96	1422.56	1321.60	1309.06	
TOTAL	10000.00	10000.00			

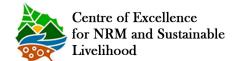
- Plantation/orchards increased by 1309.06%
- Moderately Dense Forest decreased by -34.64%
- Settlement increased by 59.68%
- Agricultural land decreased by -4.85

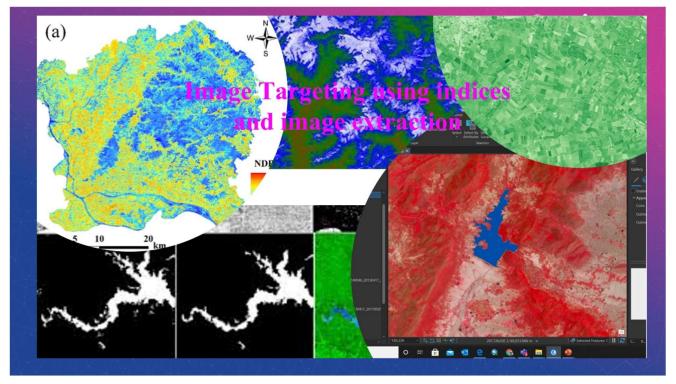
- •Open Forest increased by 33.14%
- •Area of Water bodies increased by 4.85%

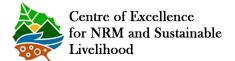

Results

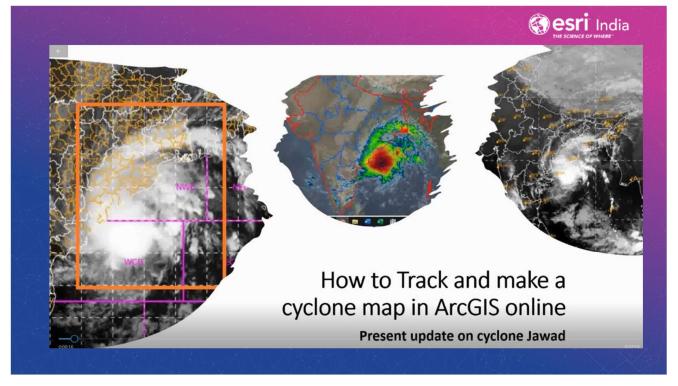
• The result of this study shows that there has been an increased in Plantation/Orchards mainly of Areca nut in all the sample grid (76.89% - 1309.06%). Similarly, Settlement/Built up area have increased. The study also shows that there has been a decreased in the agricultural land. However, Moderately Dense Forest and Open Forest have increased in the ten years time periods.



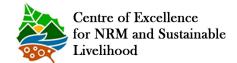




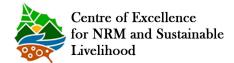




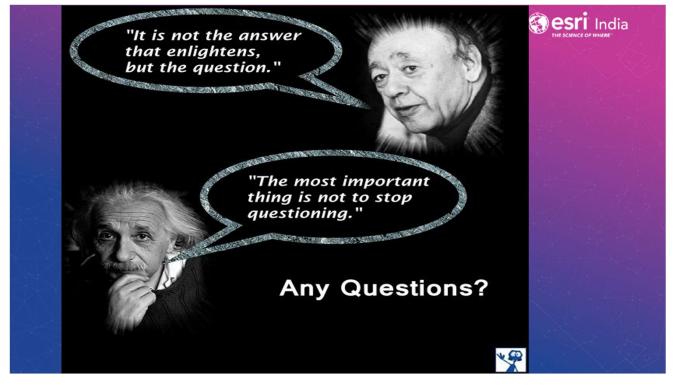


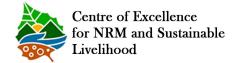


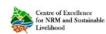
Deep learning Tool in ArcGIS Pro


Conclusion

- •The technologies discussed above are just a few of the many promising areas of remote sensing research.
- •Over the next two decades, we look forward for a revolutionary change in private industry, academia, other government organizations, and the general public to promote and advance this exciting and rapidly changing field.
- •Advances in remote sensing will enable quicker and more focused emergency response, more accurate map products, improved navigation, and better geospatial information and derived products for the general public and professionals in a wide variety of fields.







Government of Meghalaya

GEO-SPATIAL APPLICATIONS OF

Grassroot Level Response towards Ecosystem Enhancement and Nurturing

Payment for Ecosystem services

Presented By Suhsiengmon Lating, Assistant Manager – GIS & RS DPMU– WGH, MBMA/MBDA

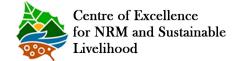
An efficient mechanism for improving natural systems under stress and at the same time helps communities by providing them remunerative incentives in lieu of following prescribed set of practices for the protection and sustainable management of ecosystems, leading to enhanced ecosystem services

An effective strategy for motivating the people to adopt sustainable land use practices as desired by the society at large for which they are provided monetary incentives based on their adherence to the land management prescriptions and performance-based ecosystem improvement works, which are duly verified.

Introduction of

Green

MEGHALAYA


Specifically suited to the socioeconomic conditions, culture and land holding system prevalent in the State may lead to the desired ecosystem development on sustainable basis and also provide an income generating opportunity to the poor people in the villages.

An ecological benefits which is provided by the ecologically sound land management activities which include forest conservation, soil & water conservation measures, control of forest fires, afforestation& reforestation

Grassroot Level Response towards Ecosystem Enhancement and Nurturing

This scheme is a transparent system for the additional provision of environmental services through conditional payments to voluntary providers.

financial support to villages, communities, clans or individuals that commit to conserve and protect Natural Forests under the **Payment for Ecosystem Services** Model for a minimum period of 30 years.

Rs. 5000/-

Villages, communities, clans or individuals that have a minimum of 2 or 5 Hectares of Natural Forest are eligible under this scheme

Those with land smaller than 5 Hectare can group their lands with other natural forest land owners so that the total size becomes 2 or 5 Hectares or more, provided that these forest lands are close by.

Benefits of Green MEGHALAYA

Benefits through incentives

Financial support up to Rs. 150@@/r hectare per year for 5 years for conserving the forest.

• The plot of land should have 5 ha area and above

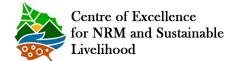
Rs. 8000/-The area should have a Natural vegetation cover

• If the Forest is notified as community reserve with Forest Department If the forest is not yet notified, the applicant can apply for notification with State Forest Dep (Wildlife Division) and submit a copy of the application receipt while submitting the application

• If forest is covered under Working Scheme

If the forest is not yet covered under working scheme, the applicant can apply for Working So with the relevant Autonomous District Councils and submit a copy of the application receipt submitting the application

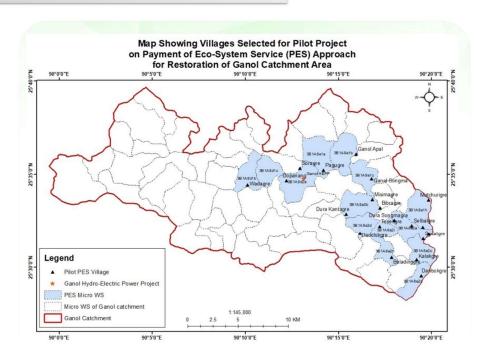
• If Forest is very dense forest or traditicneæblgmise **s**acred Grove or has Living Root Bridge or is located in espensitive zones around protected areas* (National Parks and Wildlife Sanctuar wildlife corridors **.


• *Eco-sensitive zone as defined by Forest Department Rs. 2000/-

** Wildlife corridor as identified by Forest Department

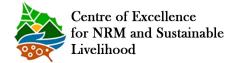
Launch on the 2nd April 2022 at WestGaro Hills District

- Implemented in the 20 villages of Ganol Catchment area
- Located in 12 critical microwatershed area.
- CLLMP WGH, S&WC Department and GHADC will be closely involved


Restoration of catchment area and improving the water discharge of springs and streams
Study its potential and effectiveness for evoking the communities participation in environmental safeguard

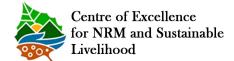
5 Field Associates (VCFs) are engaged for this pilot Project

- Proposed to run for 3 years though the feedback will be from the first year itself.
- Expected to restore 200 ha of ecosystem, generating income to the involving village people


Pilot Project of Green MEGHALAYA

Activities for the Pilot Project of Green MEGHALAYA

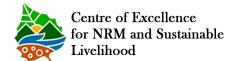
SI. No.	PES Activity	Verifiabl ⊕arameter/Indicator	Remarks
1	Transitionfrom Jhumto Improved Agriculture Practices	-Area (in ha) based on GPS -scorebasedon periodidransectobservationso verifyadherencetoprescribe opractices - observation basedon highresolution satellitelata/dronemage - soilorganicarbon	A methodologyfthetransect observationandscoring wouldbeseparatelgivenand PFAs will be trained in the methodologies.
2	Conservation of existing atural forests	-forestarea(inha)basedon GPS - changeinBasaArea/ha - changeincanopydensityasassessedviththe helpofsatellitemage/droniemage - changeinnumberofforestfire incidences -areaaffectedby forestfire - numberof treesfelled (if any) - scorebasedon transectobservations	Change inbasabreawillbe assessedising measuremendatafrom the sample plots Methodology for the measurements and observations will be separatelgiven.

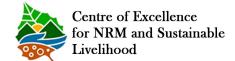

Activities for the Pilot Project of Green MEGHALAYA

SI. No.	PES Activity	Verifiabl ₽ arameter/Indicator	Remarks
3	Reforestatio(nhis activitywill have two sub components, Creationand Maintenancethe laterwill be operational from the second yearaftercreation	Reforestation - areareforested - changeinstockingnumbeloftrees ha) in annual cycle based on samplets Transectobservations n - forestfire incidences - effectivenesincontrollingrazing -survivalpercentageof enrichmentalanting regeneration	Methodology for the measurements and observations will be separately given
4	Afforestatio(this activitywill have two sub components, Creationand Maintenancethe late will be operational from the second year after creation	numberofseedlingslanted surviva % aftersixmonthsinthefirst year -areabroughtunderafforestatio (inha) Maintenanc (to be assessethroughtransect observations) -survival % after 1stt yr -survival % after 2ndyr -survival % after 3rdyr intensity fweeds transectobservation for forest fire grazing weed growth	Quantumof payment for Afforestation will be termined based on surviva percentage and score based on other transect observations Methodology for the measurements and observations will be separately given



Activities for the Pilot Project of Green MEGHALAYA


SI. No.	PES Activity	Verifiabl⊕arameter/Indicator	Remarks
5	Soil& Water Conservation Measures	ContourTrenches Length/Areaof contourtrenches - creation - maintenance Areaof waterconservation pondorreservoir -creation -maintenance physicadimensions fstructures	Quantumofincentivewilbe determined based thephysical dimensions fistructures/works created and maintained. Scores twell assigned based on theysical inspections fworks by PFAs. Methodolog for the measurements and observations will beparately developed.

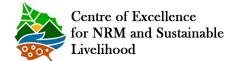

Awareness of Green MEGHALAYA

Awareness of Green MEGHALAYA

GIS support for Green MEGHALAYA

Trained the Vcf and PFAs for collection of data through GPS

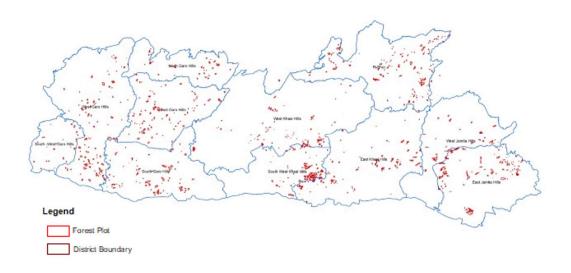
Collection and compilation of data which consist of primary and secondary data.


Creation of spatial database of all the forest cover in the Green MEGHALAYA schemes

Processing and analyzing the GIS data for the Map Output

Training

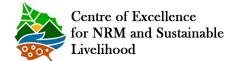
- 1. GPS training to the VCFs, staff and PFAs for delineating the forest boundary
- 2. Training to the Coe staff for collecting the GPS data
- Field training to the VCFs and PFAs

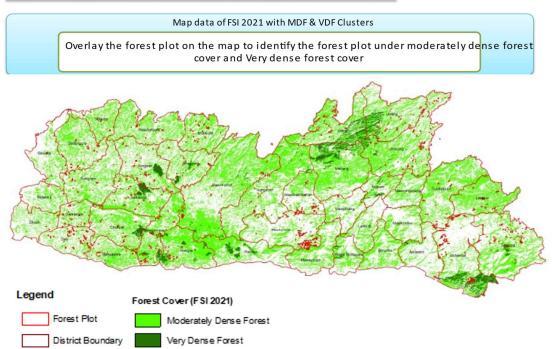

Mapping

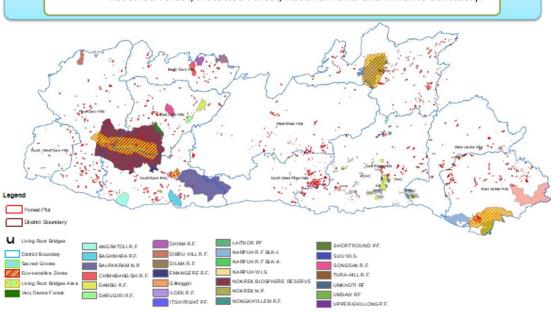
- 1. Import the forest boundary from GPS
 - 2. Layering the forest boundary in the Arc Gis for area calculation
 - 3. Overlaying the forest plot with FSI data
 - 4. Overlaying of forest plot with the Sacred Grove areas, Living Root Bridge, eco-sensitive zones, Reserved Forest, Protected Forest, National Parks and Wildlife Sanctuary
- 5. Processing andAnalysingof each forest plot for initiating the payment

GIS support for Green MEGHALAYA

District Boundary Data (MBMA/MBDA)

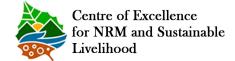

Extracting the forest plots from GPS device and import the http://fileon the map to calculate the forest plots areas which should be 5 ha and above

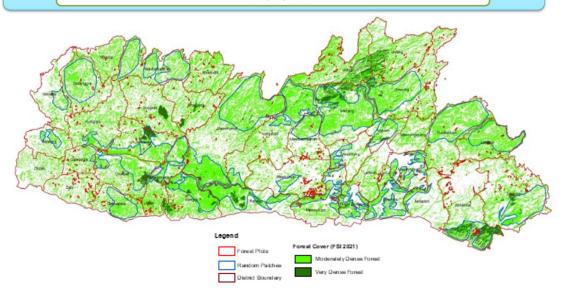




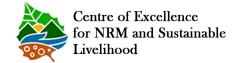
GIS support for Green MEGHALAYA

Map of MBMA/MBDA/Forest Department Data


Overlaying the forest plots with the Sacred Grove areas, Living Root Brischgres i time zones, Reserved Forest, Protected Forest, National Parks and Wildlife Sanctuary.



FSI 2021 with MDF & VDF Clusters


Overlay the forest plot on the map with areas under moderately dense forest cover and Very dense forest cover to select the random patches to reach these areas in the second phase of the projects

Statistics of overlaying forest Plots with other layers

The overlaying of different layers of GIS maps helps in generating the forest plots areas which fa under forest cover FSI 2021, Eco sensitive Zones, Sacred Grove areas, Living Root Bridge areas, Reserved Forest, Protected Forest, National Parks and Wildlife Sanctuary.

Reference	Name	Area of PES Plot (Ha)	Forest Cover FSI 2021	Area of Forest FSI 2021 (Ha)	Eco Sensitive Zones	Eco Sensitive Zones Name	Sacred Groves	Sacred Groves Name	RF, NP, WLS, BR	RF, NP, WLS, BR Name	LRB Village		LRB Bridg e	LRB Bridg e Nam e
EGHSAM DEE	Janggan M Sangma	14.43	Moderately Dense Forest	10.23	YES	NOKREK NP ESZ			YES	NOKREK BIOSPHE RE RESERVE				
EJHKHLM OG	TUBER COMMUNIT Y RESERVE	104.07	Moderately Dense Forest	85.29			YES	Khloo Blai Sien Raij Tuber						
EKHPYNH LG	nongblia3	108.25	Moderately Dense Forest	93.91							YES	Laitshuti m		
EKHPYNU XP	Lokaskhong sit	25.99	Moderately Dense Forest	20.28									YES	Bana m

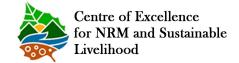
GIS support for Green MEGHALAYA

Final Layout

The maps for the anolCatchment Pilot project and the Green MEGHALAYA schemes

Management Guidelines Afforestation (i) Village: Matchurigre (ii) Block: Rongram Block (iii) District: West Garo Hills (iv) Name of the Owner: Blen Ch Marak(v) Area: 4.58 ha (vi) Map

Payment for Ecosystem Services (PES)
Map of Private Forest
(j) Village: Agungare (ji) Block: Rongram (jii) District: West Garo Hills
(iv) Name of the Applicant: Lasen T Sangma (v) Arex 11.67 ha
(vi) Reference IP WGHRONSU!
Name of the VCF for Demarcation and Geologed: Nemerak B Marsk
westers:


***Service** Service** Service**

Summary of Green MEGHALAYA

Total Forest Plots: 1145 nos.

Plot falls in RF, NP, WLS, BR: 52hos

Plot falls in LRB Site: 1 no

Plot falls in LRB Village: 1 no

Plot falls in Eco Sensitive Zones: 33nos

Plot falls in Sacred Groves: 21nos

Villages to reach out: 1362 nos.

Summary of Ganol catchment Green MEGHALAYA

Total no. of activities: 107

TransitionfromJhumto Improve Agriculture Practices

• 4 numbers of jhum plots

Conservation of existing natural forests

• 32 numbers of forest plots

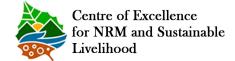
Reforestation

5 numbers of plots

Soil& WaterConservation Measures

• 27 numbers of plots

Afforestation


• 39 numbers of plots

Way forward to Green MEGHALAYA

Extensive environmental awareness, communities dialogues, sets of NRM activities, attractive necessary funds, and capacity development.

Using GIS tools and techniques helps in getting quick result and report for mapping and data generating as compared to the traditional techniques of capturing and processing the data from ground.


The Green Meghalaya schemes may prove to be an efficient approach as a functional scheme for restoration of catchment areas and addressing other environmental issues being faced by the State

Geo-Spatial Applications in Meghalaya State Forest Department

Presented by:

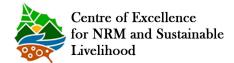
Shri. Jerry F Kharkongor,
GIS Technician,
GIS Laboratory,

Forest & Environment Department

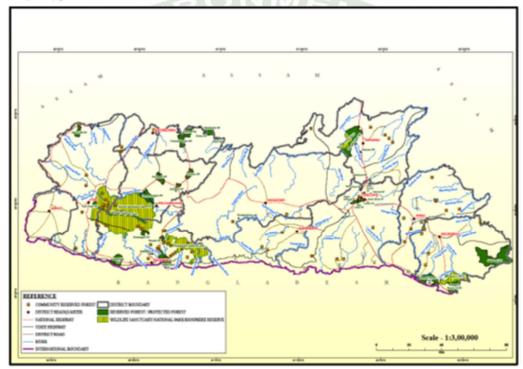
Smti. Ibadasukshisha L Mawphlang Range Forest Officer,

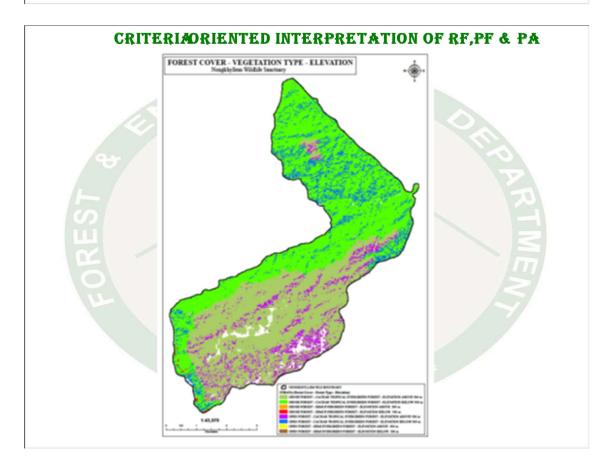
Working Plan Division,

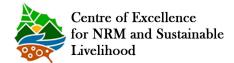
Forest & Environment Department

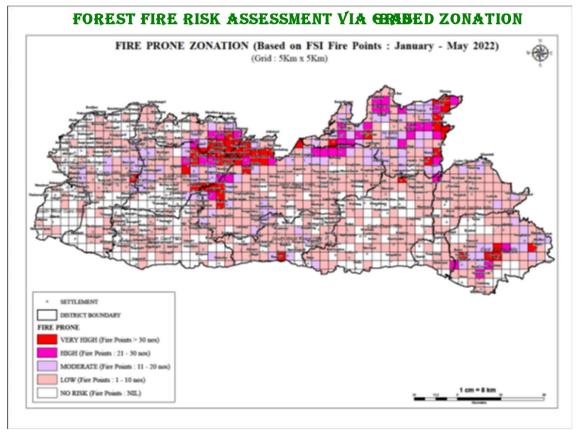

LIST OF FEW ACTIVITIES UNDER FOREST & ENVIRONMENT DEPARTMENT ENGAGING GIS & REMOTE SENSING TECHNOLOGY

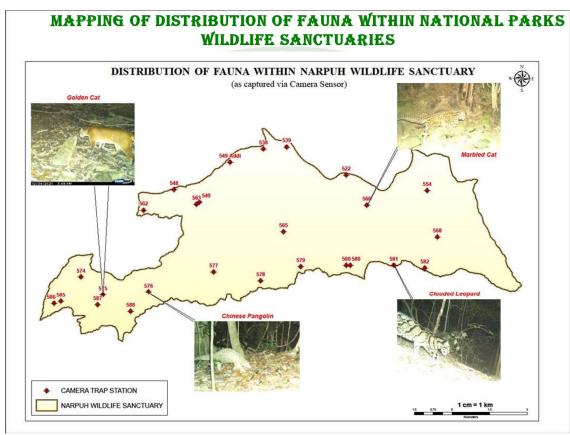
- ▶ Mapping of Reserved Forests (RF), Protected Forests (PF), Protected Areas (PA)& Community Reserved Forests (CRF).
- ▶ Criteria-Oriented Interpretation of RF, PF & PA.
- ► Forest Fire Risk Assessment via Grid-Based Zonation.
- Mapping of Distribution of Fauna within National Parks & Wildlife Sanctuaries
- ▶ 3D Visualization depicting suitability for Plantation.
- ► Forest Density Cover of Meghalaya.
- ▶ Forest/Vegetation Type Cover of Meghalaya.

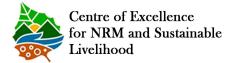


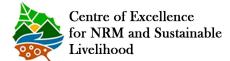


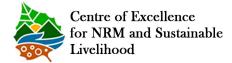


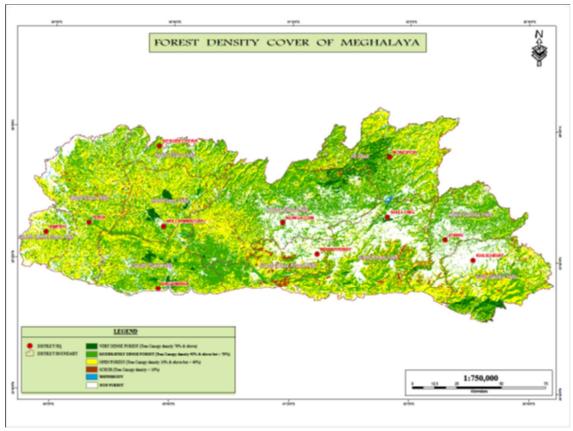


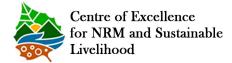


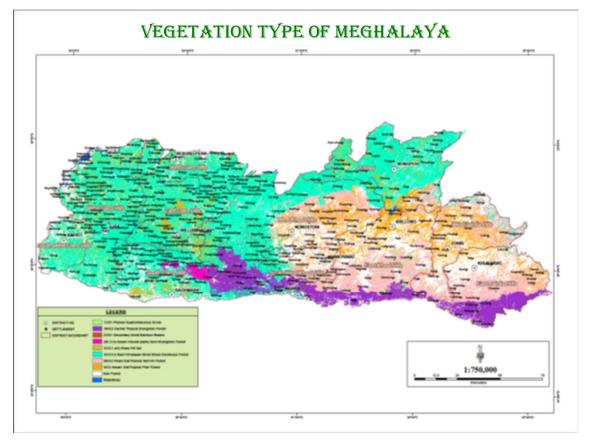


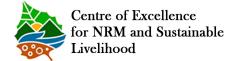

588	Himalyan Crestless Porcupine	566	Marbled cat
	Large Indian Civet	AME	Blue Whistling Thrush
	Asiatic Bush-Tailed Porcupine		Pallas squirrel
	Marbled cat		Peacock Pheasant
	Marbled cat		Kalij Pheasant
6		0 6	Sambar
575	Barking deer	4 4	Asiatic Brushtailed Porcupine
	Wild Boar		Yellow throated Marten
	Serow		Pitta
	Kalij Pheasant		Wild boar
	Golden cat		Large Indian Civet
	Himalyan Crestless Porcupine		Himalayan Crestless Poircupine
P	Barking deer		
		576	Sambar
577	Leopard cat		Chinese pangolin
	Pallas squirrel	574	Large Indian Civet
	Rodent		Rhesus Macaque
	Peacock Pheasant		Kalij Pheasant
	Yellow throated Marten	ALA	Himalayan Palm Civet
	Serow		Serow











Geo Spatial Applications in Soil and Water Conservation Department

Presented by: Frinkwell Marboh S&WCD (Jr-1)

Dated- 18th November, 2022

Mandate

- Natural Resources Management Task (Soil, Water, Vegetative-Resources)
- Adoption & application of appropriate Soil & Water Conservation techniques, measures, practices for perpetual utilization and sustainable development


Conserve & Prosper

• Improvement, enhancement and sustaining livelihood system.

AIMS

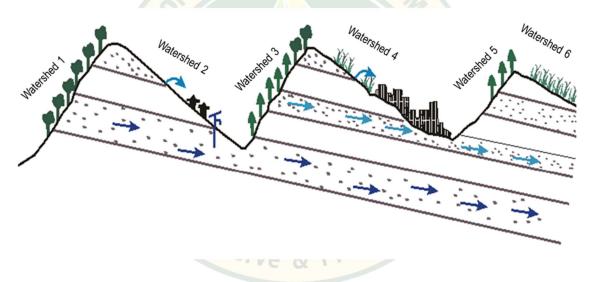
To promote sustainable utilization of soil, water and vegetation resources.

Conserve & Prosper

- Sustainable food support and water needs.
- To promote social, economic and ecological development


MAJOR PROGRAMMES

- Watershed Development Component of the Pradhan Mantri Krishi Sinchayee Yojana (PMKSY-WDC)
- Pradhan Mantri Krishi Sinchayee Yojana Har Khet Ko Pani (PMKSY-HKKP)
- Rashtriya Krishi Vigyan Yojana (RKVY)
- National Bamboo Mission (NBM)
- Soil and Water Conservation Scheme under Rural Infrastructure Development Fund (RIDF), NABARD Loan. RKVY
- Springshed Development Works for Rejuvenation of Springs for Climate Resilient Development in Water Stressed Areas of Meghalaya.


Important concepts in Soil & Water Conservation

- Watershed concept Area from which all the water flows out through a common outlet. (Surface)
- Springshed Concept The area from which the water flows out through a SPRING. (Sub Surface)

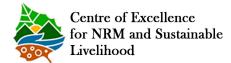
(Springs are areas on the ground that show groundwater outflow from the aquifers below)

Conserve & Prospe

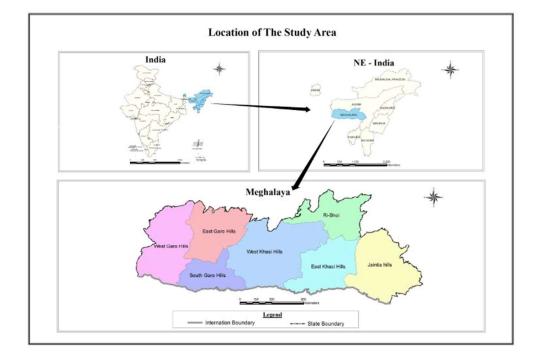

Continuity of Watershed and Springshed

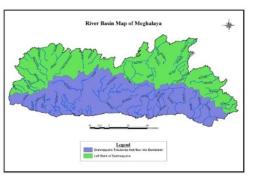
Geo-spatial Applications in Watershed Management (Ridge to Valley Approach)

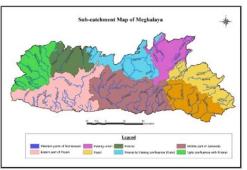
- Delineation of Watershed Boundary Across the State up to Micro watershed Level.
- Publication of Watershed Atlas of Meghalaya in collaboration with NeSAC
- Selection of Project Area based on Priority
- Preparation of Resource Maps (LULC/Soil/Drainage/ etc)
- Preparation of Planned Activities Maps
- Monitoring, Evaluation & Documentation

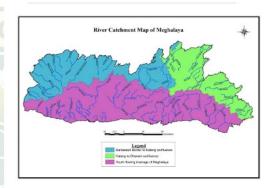

An Overview of Watershed Atlas of Meghalaya

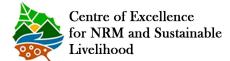
Class	Average Size (Lakh Ha)	Size Range (Lakh Ha)	Nos.
REGION	550	270-1130	1 North East India
BASIN	95	30-300	2
CATCHMENT	30	10-50	3
SUB CATCHMENT	7	2-10	8
WATERSHED	1	0.2-3.0	35
SUB WATERSHED	0.15	0.1-0.2	179
MINI WATERSHED	0.05	0.02-0.1	595
MICRO WATERSHED	0.005	0.001-0.02	2776

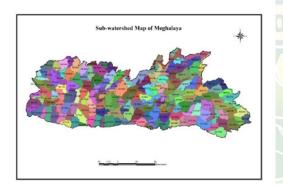


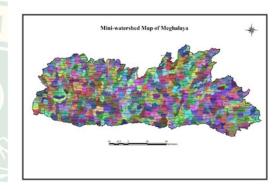


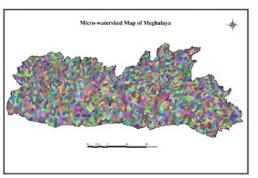


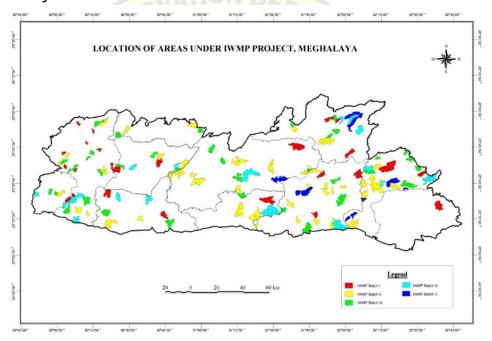


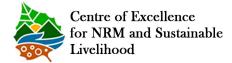


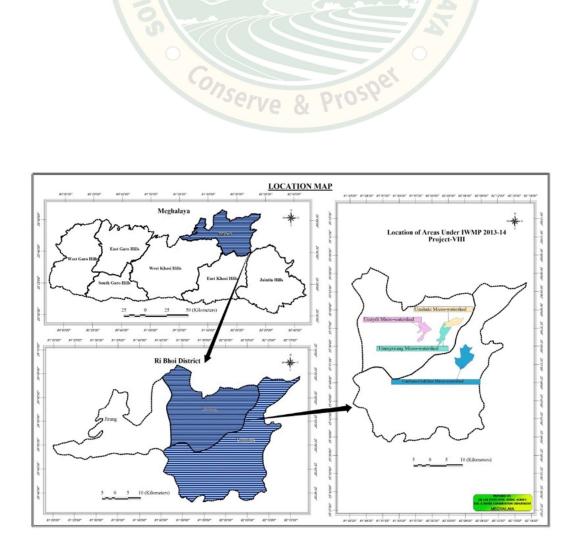


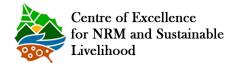


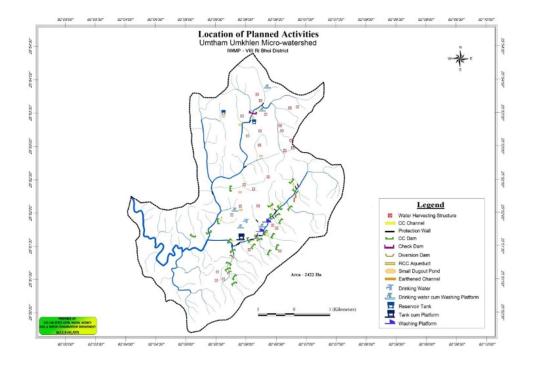


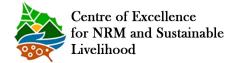



IWMP Project Status

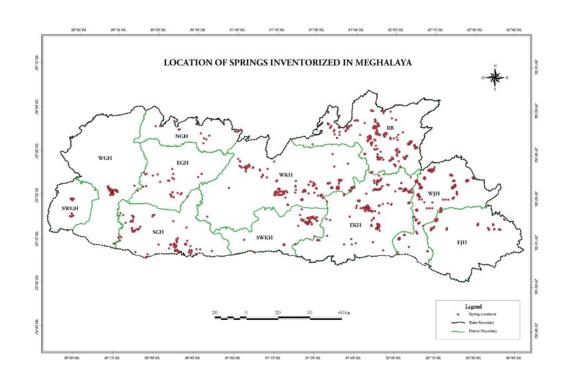


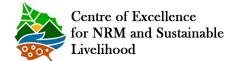

Mapping Exercises for Watershed Management Projects

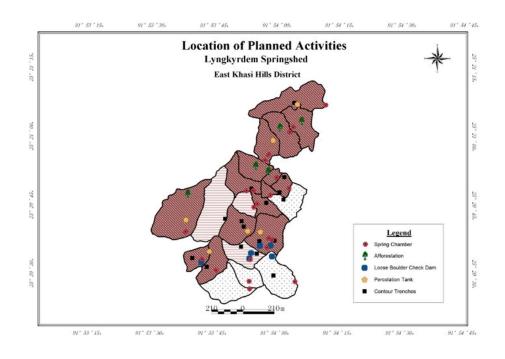


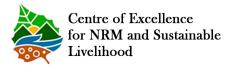

Geo-spatial Applications in Springshed Management (Valley to Valley Approach)

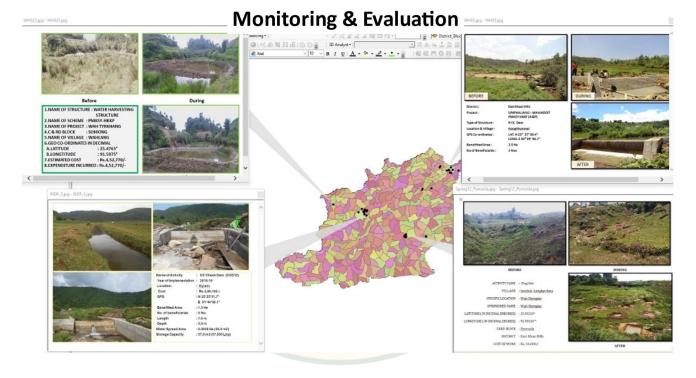
- Inventorization of Springs across the state
- Springshed Development by Cluster approach
- Classification of Vulnerability class of Springs based on Field survey
- Delineation of Springshed Boundary
- Identification of Recharge Areas based on Geological Features(Dip and Strike, Fractures, Parent Materials)
- Preparation of Resource Maps (LULC/Soil/Drainage/ etc)
- Preparation of Planned Activities Maps
- Monitoring, Evaluation & Documentation



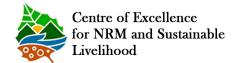

District \	Wise Spring Inventorization	
SI No	Districts	Numbers of Springs mapped
1	East Khasi Hills District	247
2	West Khasi Hills District	469
3	South West khasi Hills District	96
4	East Jaintia Hills District	222
5	West Jaintia Hills District	301
6	Ribhoi District	264
7	East Garo Hills District	453
8	South Garo Hills District	104
9	South West Garo Hills District	301
10	West Garo Hills District	250
11	North Garo Hills District	155
	Total	2862

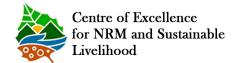



Mapping Exercises for Springshed Development Projects

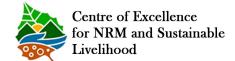








TOPIC - GEO-SPATIAL APPLICATIONS IN STATE WATER RESOURCES DEPARTMENT


INTRODUCTION

WRD Using Geospatial technology to collect(by D-GPS/H-GPS/Total Station & Mobile App), analyse the result in GIS software [Paid Software (ArcGIS Pro) & Open Source (QGIS)] and store geographic information in the Cloud databae (Online / GEE/GitHub).

GEO-SPATIAL APPLICATION

WRD have divided the application of GIS into two

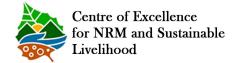
Parts

1-BASIC APPLICATION

2-ADVANCE APPLICATION

BASIC APPLICATION OF GIS

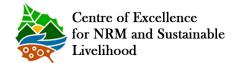
- *ALL THE TECHNICAL STAFFS(ASST-ENGINEER & JUNIOR ENGINEER) OF 11 DIVISIONS KNOW ALL THE SIMPLE GIS APPLICATION IN LOCATING THE CHECK DAM, HEADWORK, CANAL LINE, PIPE LINE, etc IN GOOGLE EARTH PRO BY SAVING THE FILE IN KML/KMZ FORMAT, THEN DIGITIZE AND ANALYSE TO GENERATE THE SHAPEFILE AND MAP IN GIS SOFTWARE IN PREPARING THE DPR.
- FOR QUICK SUBMISSION/INFORMATION WRD GIS EXPERTS HAS DEVELOPED THE ONLINE-GIS WEB-MAPPING APPLICATION EDITING TOOLS THROUGH ONLINE FOR INFORMATION IF THE PROJECT DEAL ONLY WITH SIMPLE SHAPEFILES (POINT, LINE & POLYGON)

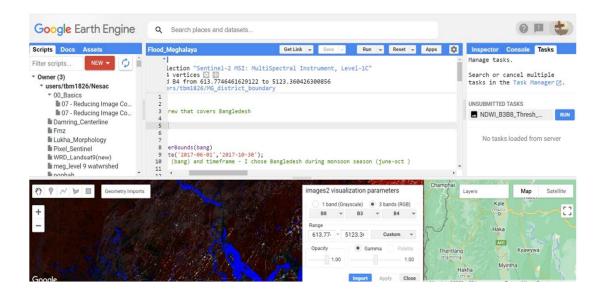

TO CALIBRATE AND VALIDATE THE GROUND TRUTH -

- FINAL SURVEY BY DGPS &T-STATION
- 2. PRELIMINARY SURVEY BY MOBILE APP OR H-GPS.

ADVANCE APPLICATION

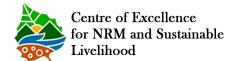
• WE HAVE ENGINEERS IN THE OFFICE OF CHIEF ENGINEER, SHILLONG & FEW EXPERT ENGINEERS IN THE DIVISION OFFICE TO HANDLE THE MODELLING SECTION LIKE HOW TO WRITE SCRIPT IN GEE PLATFORM, PERFORM AND SIMULATE THE MODEL IN SOFTWARE LIKE HEC(Hydrologic Engineering Centre) i.e HecHMS(Hydrologic Modelling System) & HecRAS(River Analysis System) & CREATING PYTHON SCRIPT FOR MODELLING IN ArcGIS PRO.


Web-mapping application editing with tools

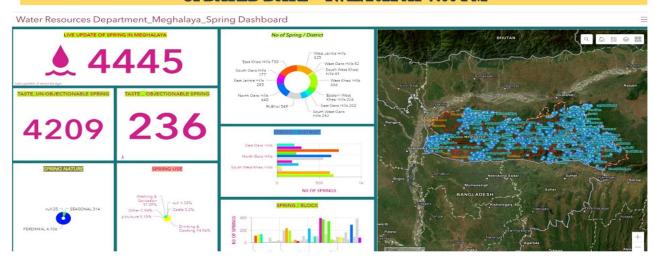


DEPT OF WATER RESOURCES WORKING APPLICATION IN THE GS TECHNOLGY

GEE SCRIPTGIS APPLICATIONCLOUD DATABASEMODELLING

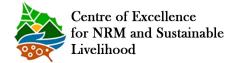

GEE SCRIPT

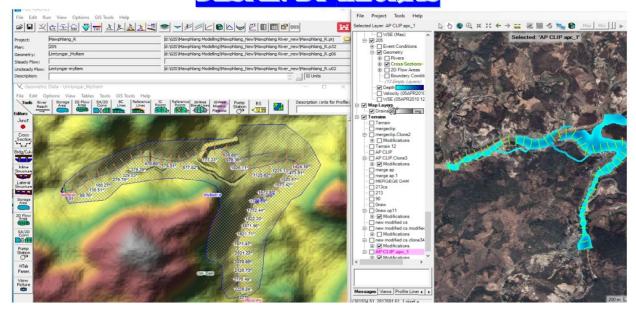




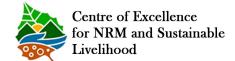
GIS APPLICATION With Hydomet Stations Map

CLOUD DATABASE WITH LIVE SPRING DASHBOARD DEVELOPED IN THE ONLINE PORTAL UPDATED LIVE BY MOBILE APP

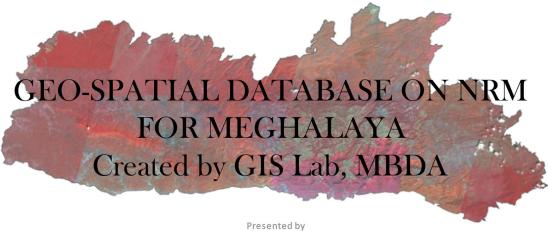

UPDATED DATE - 17/11/2022 AT 7:00 PM

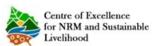


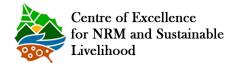
MODELLING OF RIVER C/S, CHANNEL & DAM DESIGN BY HECRAS


THANK YOU

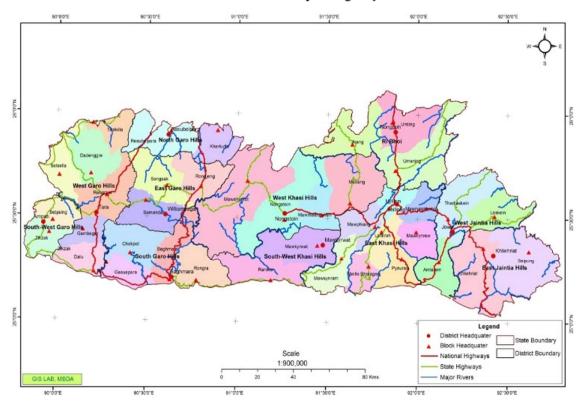
WATER RESOURCES DEPARTMENT MEGHALAYA

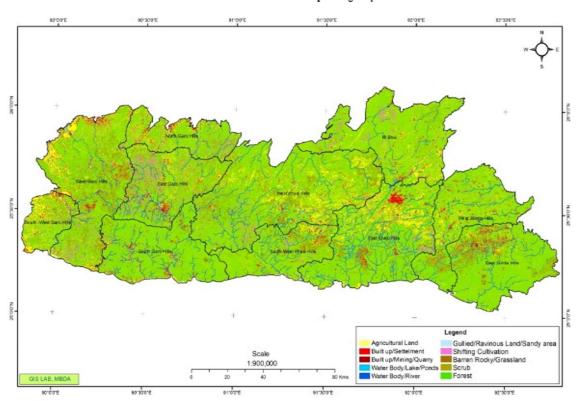




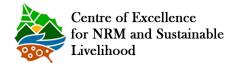

LIST OF LAYERS:

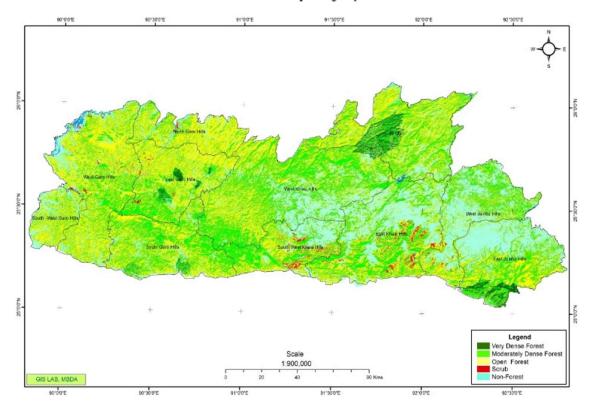
1.	Administrative Boundaries	23.	Automatic Weather Stations
2.	Land Use Land Cover	24.	Water Quality at Monitoring Locations
3.	Forest Cover	25.	Mosaicof IRS LISS IV
4.	Forest Type	26.	Mosaic of Merged IRS LISS IV an@artosat1
5.	Reserved Forests & Protected Areas	27.	MosaicToposheet 1:25,00 &1: 50,000
6.	Sacred Grooves	28.	Umiew and Ganol Catchment Area
7.	Forest Fire Points	29.	Springs Locations
8.	Drainage Network		1 3
9.	Soil	30.	CLLMP Village Boundary
10.	Geology	31.	NRM Boundary
11.	Road Network	32.	Green (PES) Boundary
12.	Village Locations	33.	PES Plots
13.	Digital Terrain Model	34.	CLLMP Land use Land Cover 2012013;
14.	Slope		2016-2017
15.	Aspect	35.	NDVI
16.	Watershed	36.	Carbon Stock
17.	Sub Watershed	37.	Agro-Climatic Zone
18.	Micro Watershed	38.	Intervention points
19.	Agro-Ecological Regions	39.	FMP (Boundary, LULC, Sample Plots, Fores
20.	Temperature	30.	Cover with Community Forest)
21.	Rainfall	40.	LRB Locations
22.	Community Nurseries		
	*		

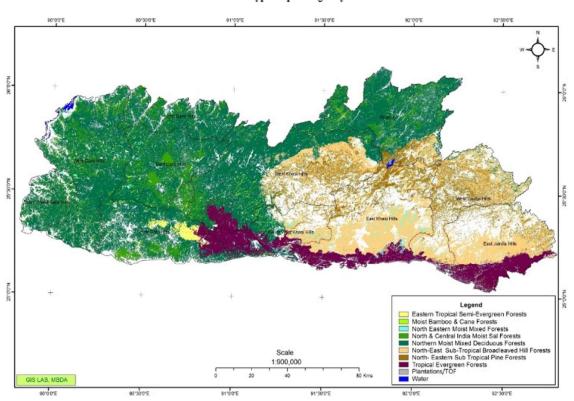




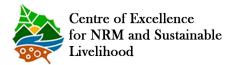
Administrative Map of Meghalaya

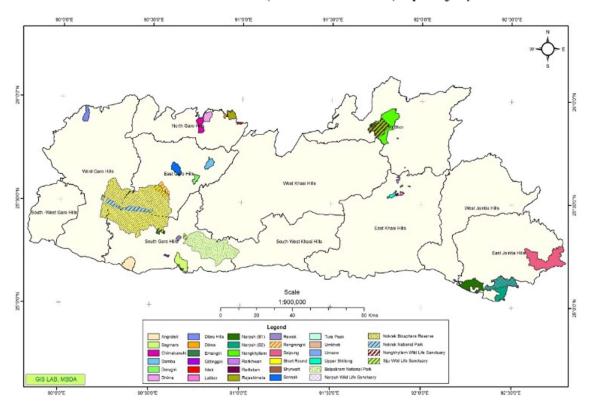

Land Use & Land Cover Map of Meghalaya

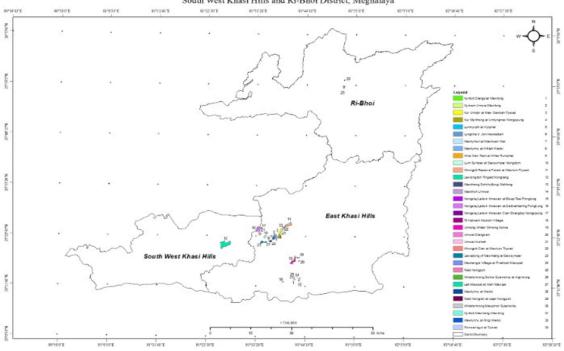




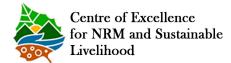
Forest Cover Map of Meghalaya

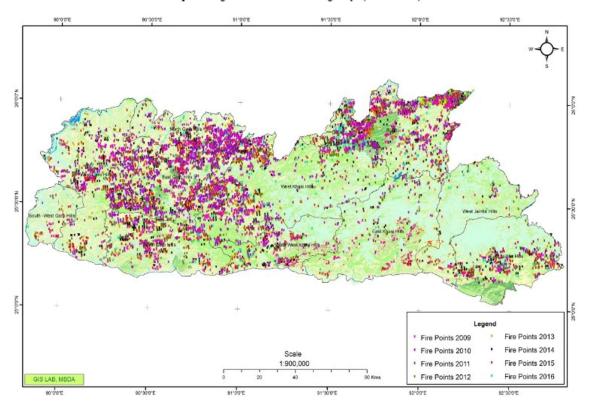

Forest Type Map of Meghalaya

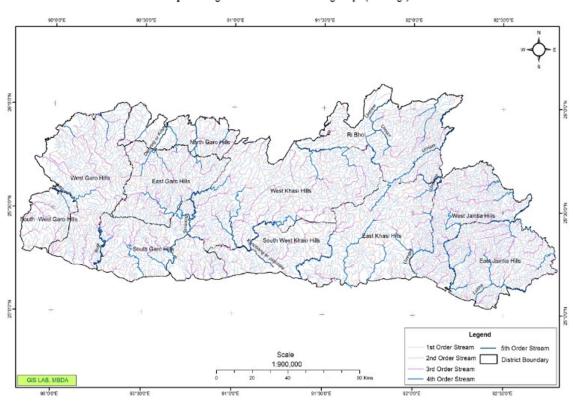




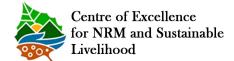
Reserved Forests & Protected Areas (National Parks & Sanctuaries) Map of Meghalaya

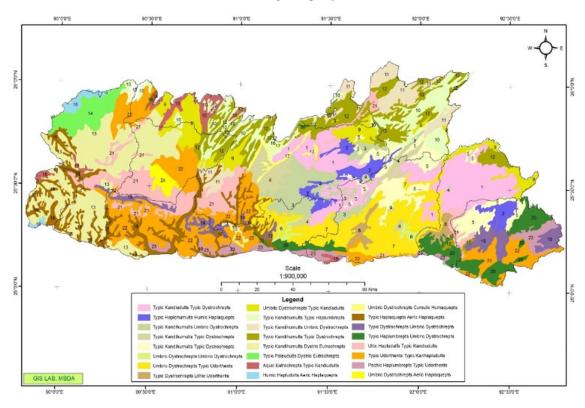

Map Showing Sacred Grove in and around East Khasi Hills, South West Khasi Hills and Ri-Bhoi District, Meghalaya

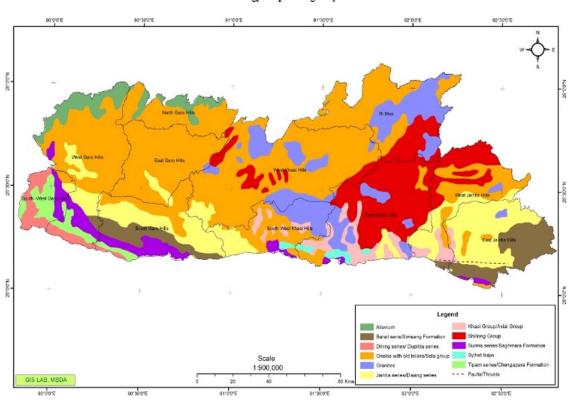




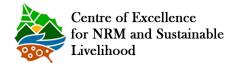
Map Showing Forest Fire Points in Meghalaya (2009 to 2016)

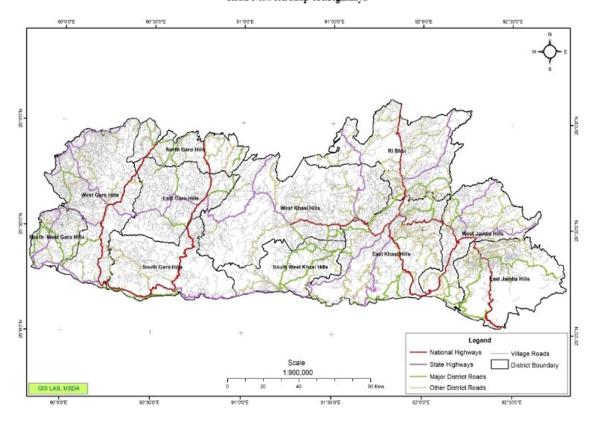

Map Showing Rivers and Streams in Meghalaya (Drainage)

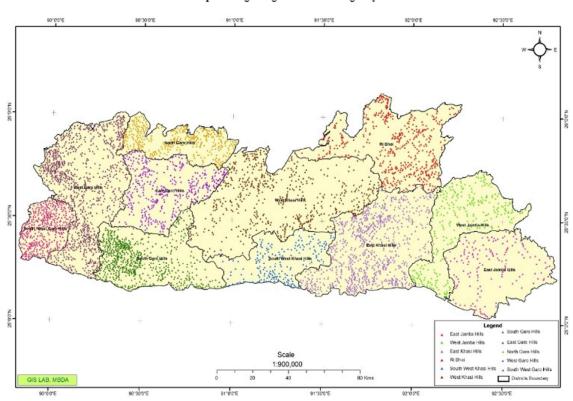




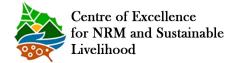
Soil Map of Meghalaya

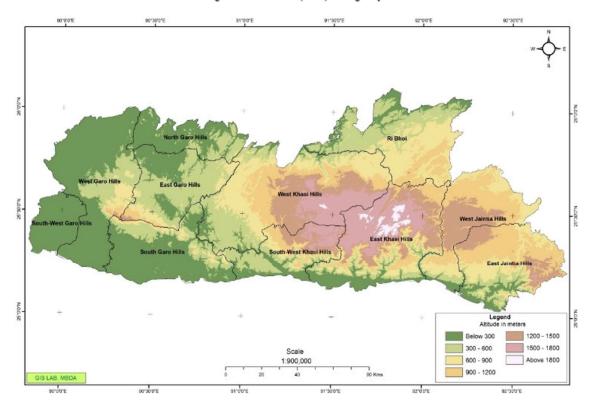

Geology Map of Meghalaya

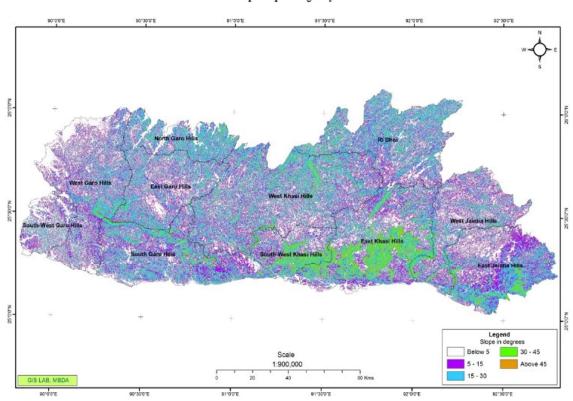




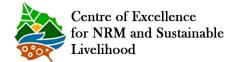
Road Network Map of Meghalaya

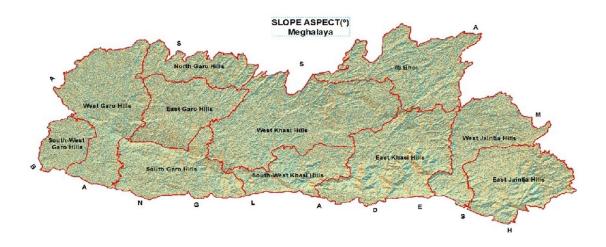

Map Showing Village Locations in Meghalaya

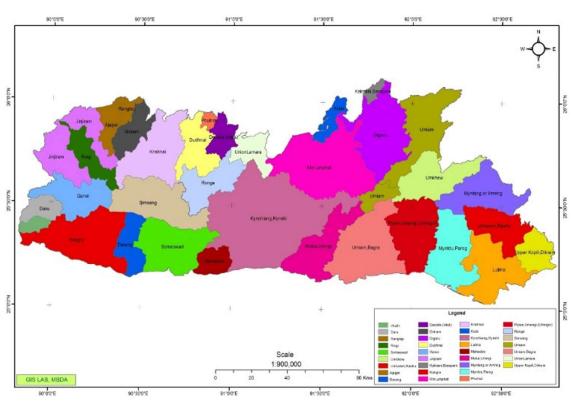


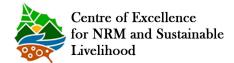


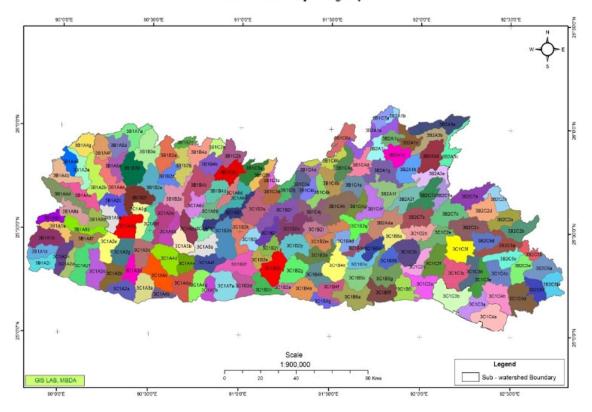
Digital Terrain Model (DTM) of Meghalaya

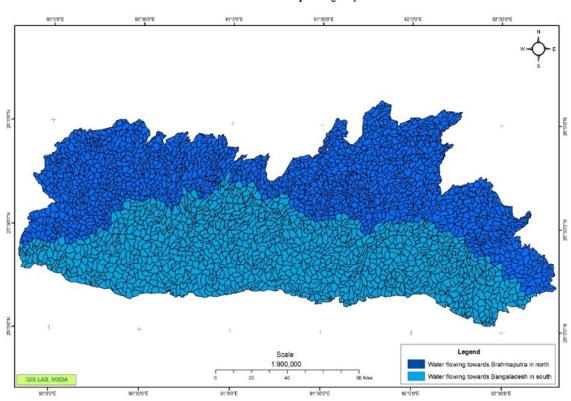

Slope Map of Meghalaya



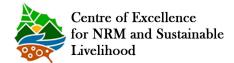


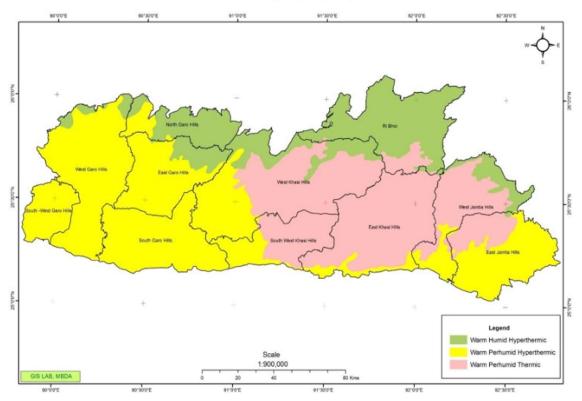

Watershed Map of Meghalaya

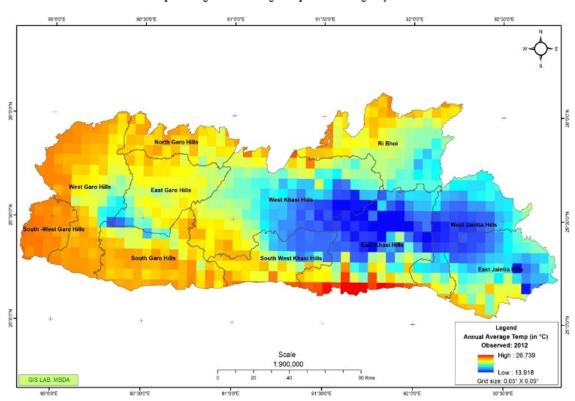




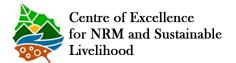
Sub Watershed Map of Meghalaya

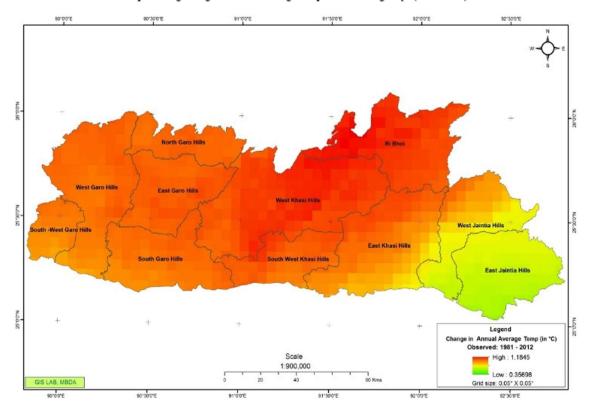

Micro Watershed Map of Meghalaya

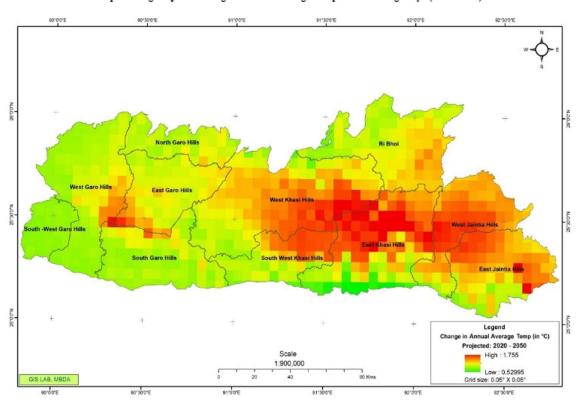




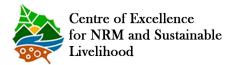
Agro-Ecological, Meghalaya

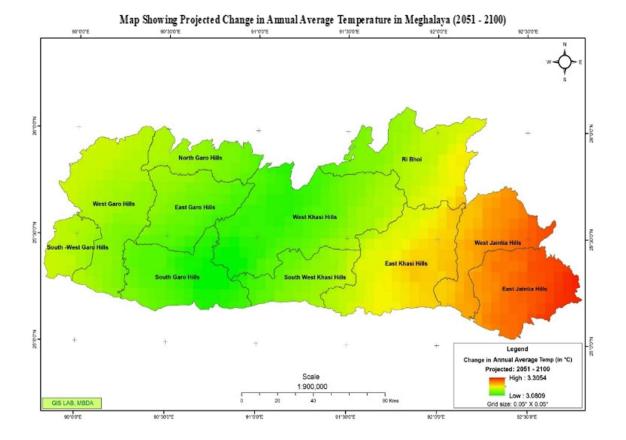

Map Showing Annual Average Temperature in Meghalaya in 2012

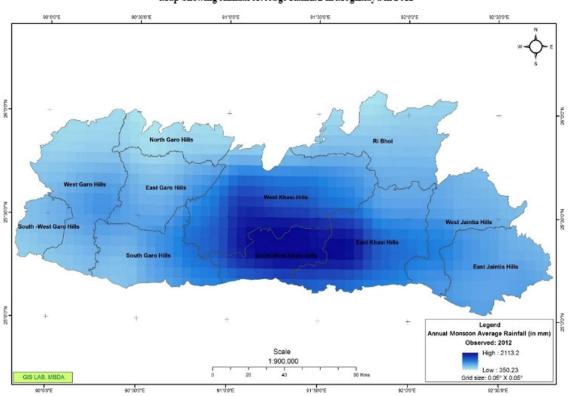


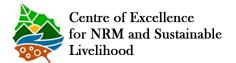


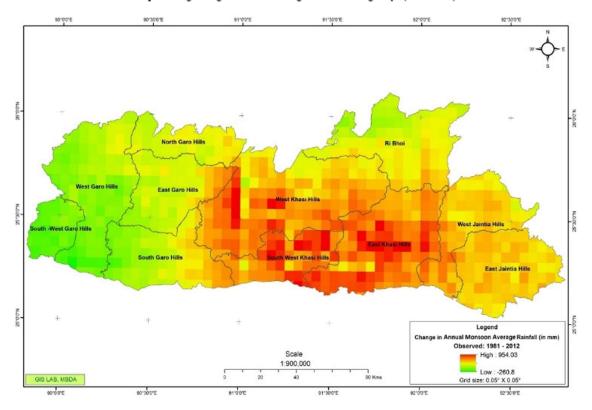
Map Showing Change in Annual Average Temperature in Meghalaya (1981 - 2012)

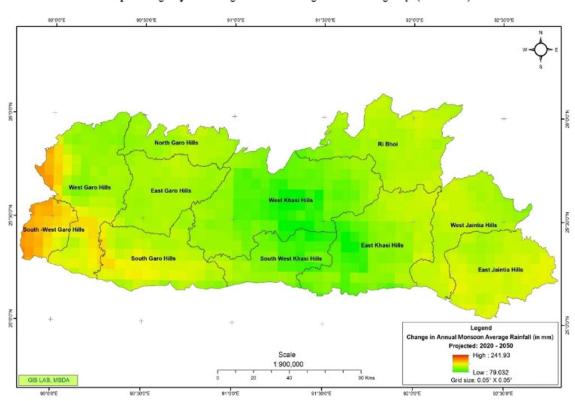

Map Showing Projected Change in Annual Average Temperature in Meghalaya (2020 - 2050)



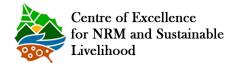


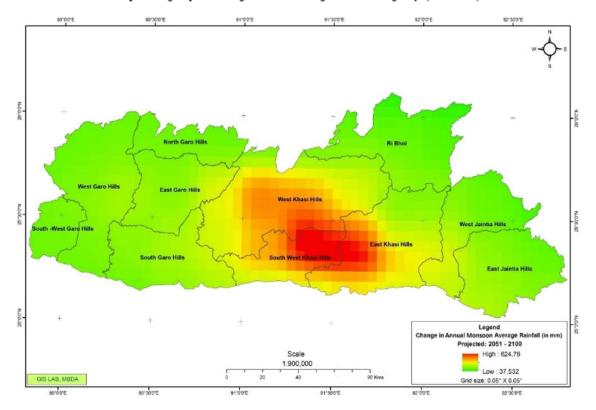

Map Showing Annual Average Rainfall in Meghalaya in 2012

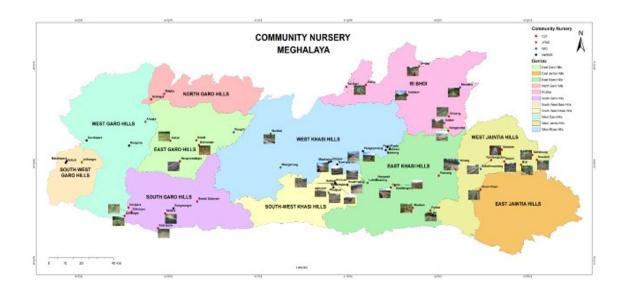




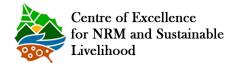
Map Showing Change in Annual Average Rainfall in Meghalaya (1981 - 2012)

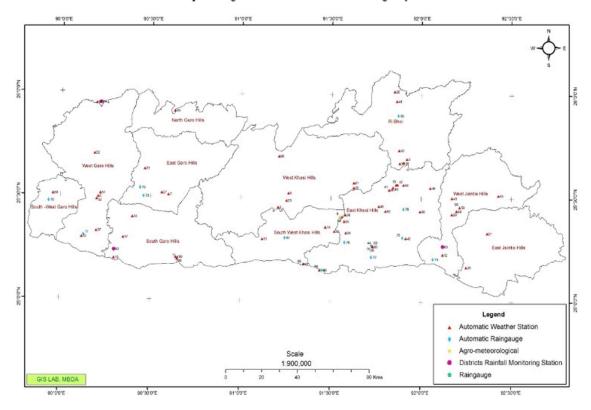

Map Showing Projected Change in Annual Average Rainfall in Meghalaya (2020 - 2050)

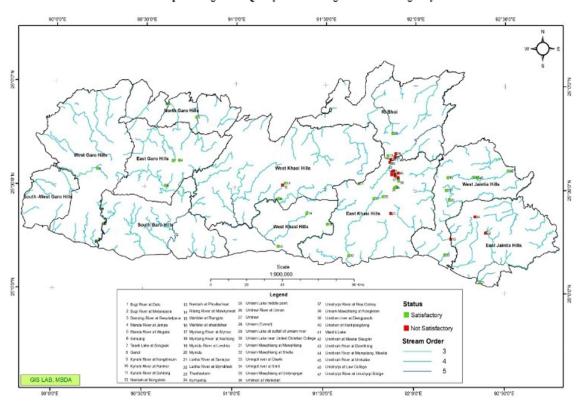




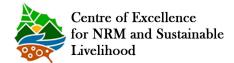
Map Showing Projected Change in Annual Average Rainfall in Meghalaya (2051 - 2100)

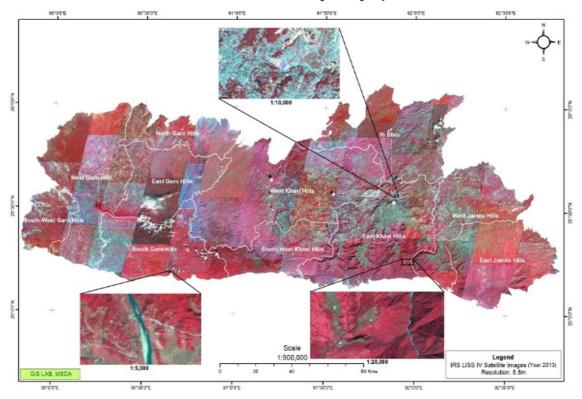


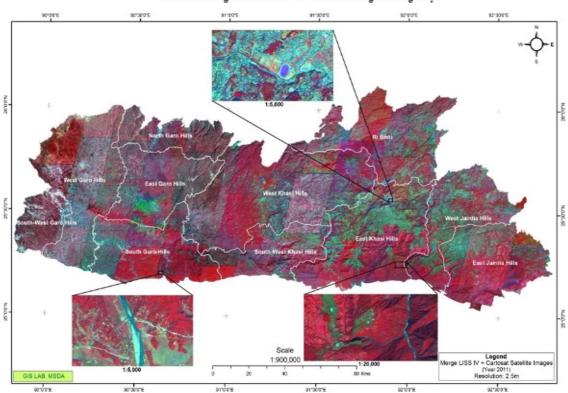




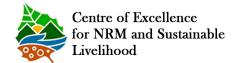
Map Showing Automatic Weather Stations in Meghalaya

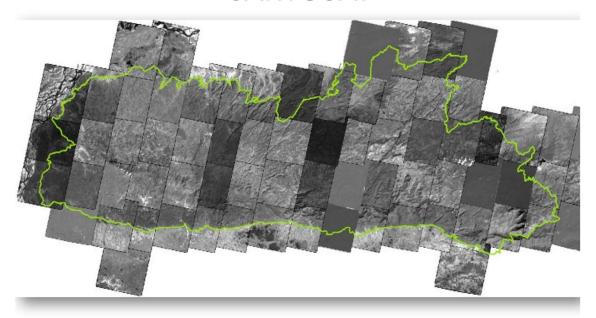

Map Showing Water Quality at Monitoring Locations in Meghalaya

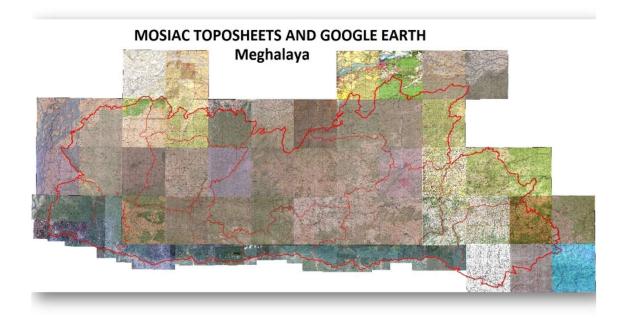




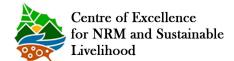
Mosaic of IRS LISS IV Images of Meghalaya

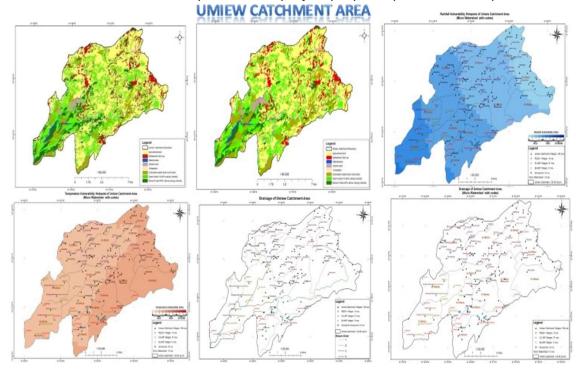

Mosaic of Merged IRS LISS IV & Cartosat 1 Images of Meghalaya

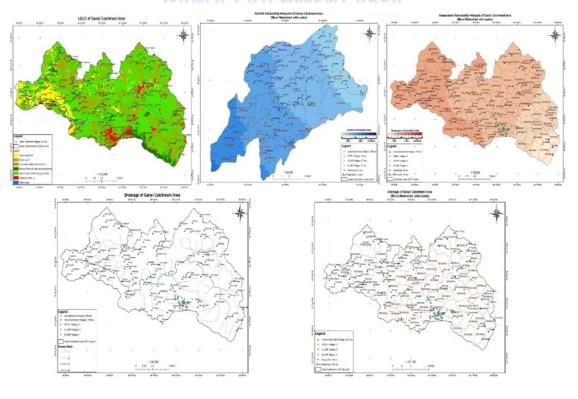




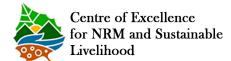
CARTOSAT

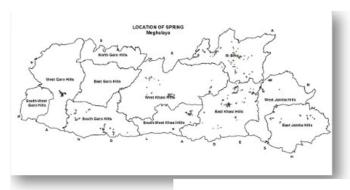


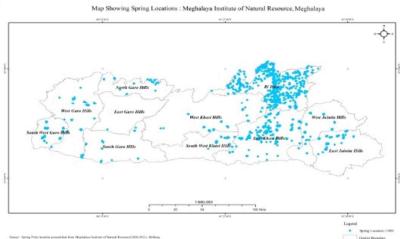


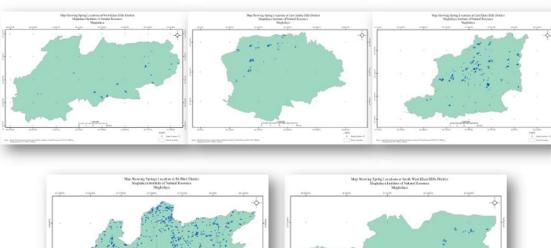


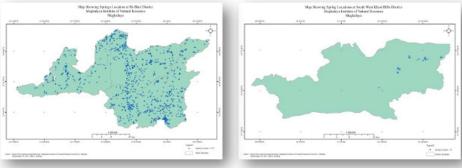
Land Use Land Cover change (2010 & 2018) and Climate Change Vulnerability Assessment of Umiew Catchment area and providing datasets for preparing of KfW development bank project proposal (MINR & MCCC)


GANOL CATCHMENT AREA

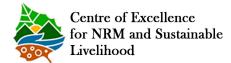


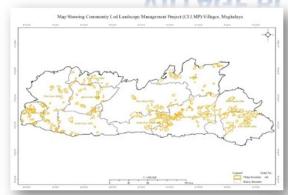


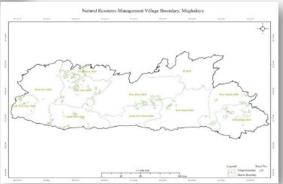


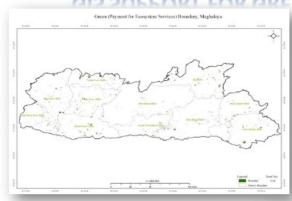


Springs of Meghalaya

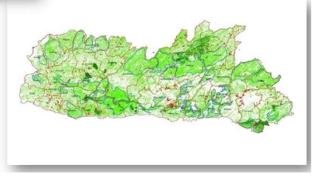




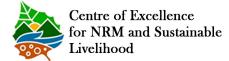


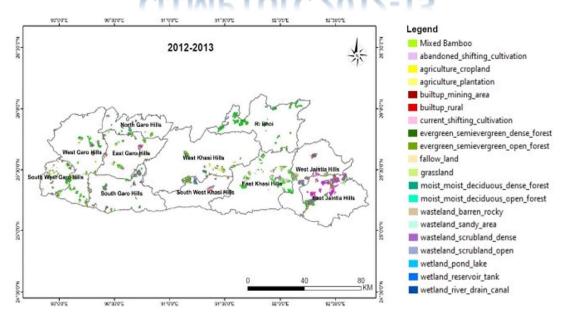


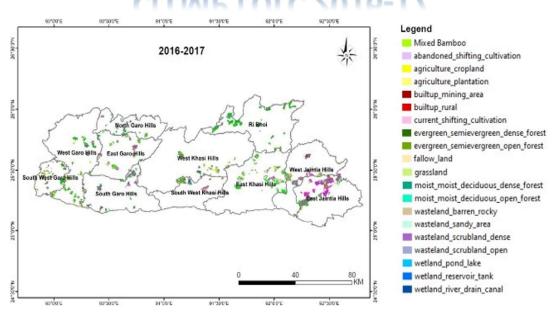
VILLAGE BOUNDARY



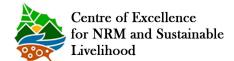
GIS SUPPORT FOR GREEN MEGHALAYA: PES

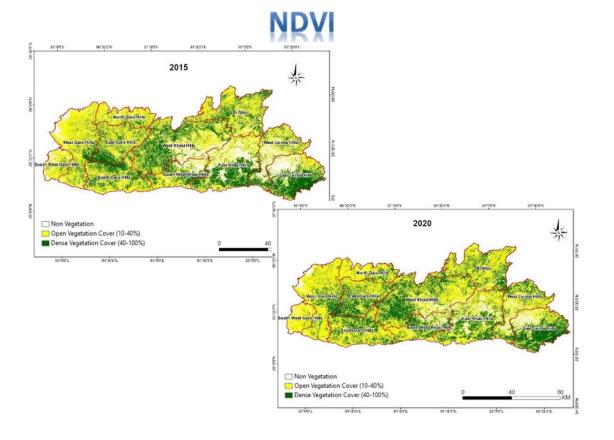

PES Plots overlayed on Forest Cover FSI 2021 with MDF VDF Clusters

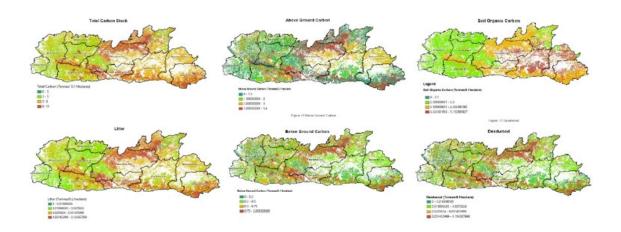


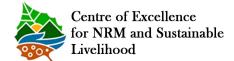


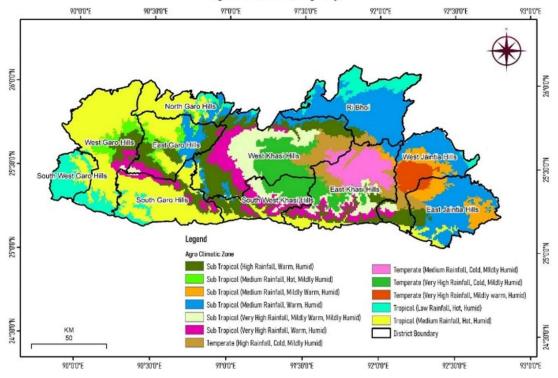
CLLMP LULC 2012-13

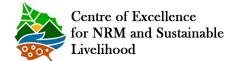

CLLMP LULC 2016-17






CARBON STOCK

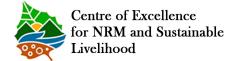



GENERATED MAPS

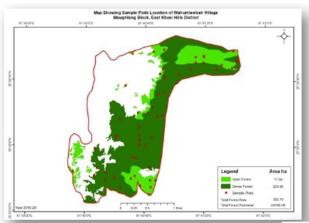
- Meghalaya Livelihoodsand Access to Markets Project (MLAMP) Villages 1350 nos Boundary, LULC maps GE + LISS 4 imagery Max no. of classes: 9
- Meghalaya Community Led Landscape Management Project (CLLMP) Villages 400 nos
 - Boundary, LULC, Slope, Contour, Intervention Maps; GE + LISS 4 imagery Max no. of classes: 9
- Meghalaya Institute of Natural Resource (MINR)
 - Land Use Land Cover change (2010 & 2018) and Climate Change Vulnerability Assessment of Umiew Catchment area and providing datasets for preparing of KfW developmentbank project proposal; GE+LISS4imageryMax no. of classes: 9
 - Spring Mapping, Aroma mission
- Forest Management Project (FMP)
 - Location map, Satellite Image, Boundary Map, LULC, Forest Cover, Sampling Points, Average Slope/Height, Forest Blank, Forest Type, Forest Perimeter, Waterbodies, Forest Fire Points., Distance from HQ/ Road, Carbon Stock, Min/Max Temp, Average PCP, Soil Desc, Village Lat/Long.
 - Max no. of classes: 9
- Tura Pilot Mapping and Living Root Bridge Mapping using UAV Mapping Scale: 1:1000
 - Paper Size Composed: A1 UAV Imagery , No. of classes: 12+

NEW LAYER UNDER PREPARATION

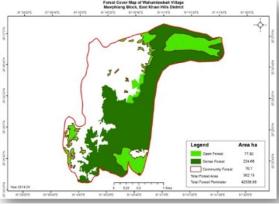
- NRM boundaries for all the 6500 plus villages of the state.
- Village level LULC maps on the scale of 1:4000 in collaboration with NESAC.
- Overlay analysis for Green Meghalaya: PES(Green)


SAMPLE MAPS UNDER CLLMP (ONTINE NOTO MANNEET VILLAGE (ONTINE NOT

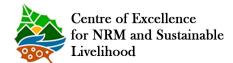
• The maps prepared by respective GIS personnel of the district for CNRMP for visualization and planning purposes

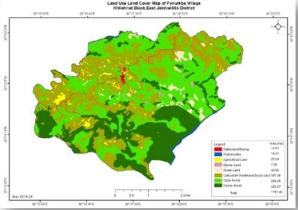

INTERVENTION MAP

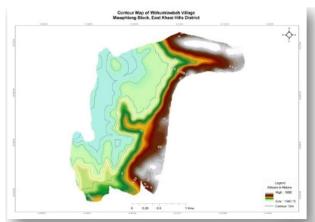
Mawthong Village South West Khasi Hills District Meghalaya


Lawblei Village South West Khasi Hills District Meghalaya

FMP Sample Plot


FMP Forest Cover

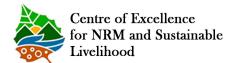


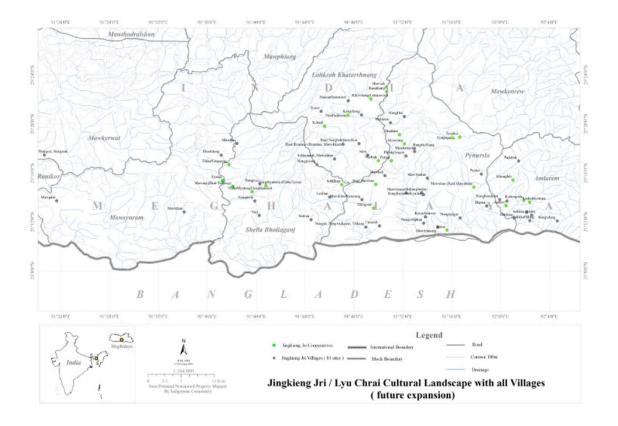


Project Boundary Map

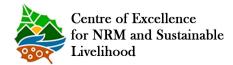

LULC Map

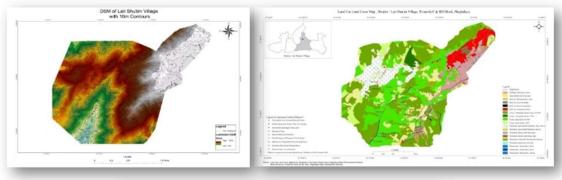
Contour Map


Slope Map

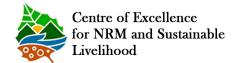


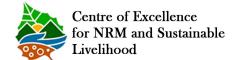


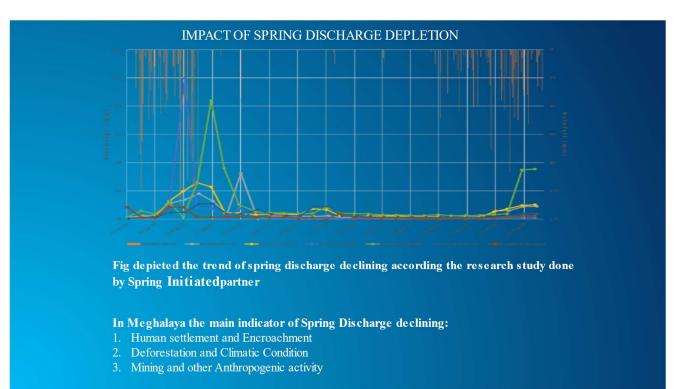




LRB SAMPLE MAPS



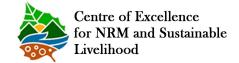




What are Springs?

A spring may be considered as an 'overflowing aquifer'

Springs represent 'natural ground water discharge that feeds streams and rivers, often making such streams and rivers perennial...

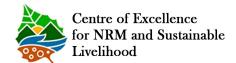


ABOUT SPRINGSHED MANAGEMENT

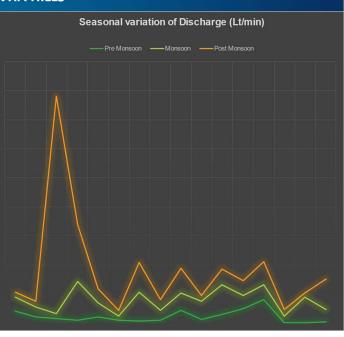
SPRINGSHED MANAGEMENT IS A METHOD OR AN APPROACH

- 1. IMPROVE SPRING DISCHARGE
- 2. ENHANCE AVAILABILITY OF SAFE AND CLEAN WATER FOR DOMESTIC AND OTHER PURPOSES
- 3. TO BUILD THE BASELINE DATA OF QUALITATIVE AND QUANTITATIVE DATA OF SPRINGSHED MANAGEMENT OF THE STATE

ABOUT SPRINGSHED MANAGEMENT

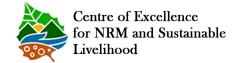

Springshed Management involves creation of artificial rain-water harvesting structures such as:

- 1. Recharge Pitsor Trenches (Contour Trenches)
- 2. Dug Out Ponds
- 3. Check Dams
- 4. Contour Bunds and
- 5. Afforestation with fruit or forest trees



Treatment of the catchment areas springshed measurement, Jarian sutnga, East Jaintia Hills

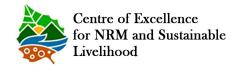
Seasonal variation of discharge (Litre/minute) of the catchment area treated OF SPRINGS, EAST JAINTIA HILLS


VNRMCs	SPRINGS NAME	Pre Monsoon	Monsoon	Post Monsoon
UMSATAI	'AI WAH LUBER KHLIEH DAM		4.84	1.57
LUMSKHEN	MANIAJAW	2.2	3.33	1.84
PAMRA KMAI SHNONG			1.67	75
JARAIN (SUTNGA)	LUM THANGBRU	0.97	13.33	19.35
LELAD	Um khloo Blai	2	5	4.63
LELAD	UMRIANG	1	1.33	2
SHNONGRIM	UMDKHAR	0.67	10	10
SAHKAI	KHLIEH MYNKSEH	1.06	3.18	3.67
SARKAI	LUMHEH	4.29	6	8.56
MYNTHLU	UMTHALONG	1.33	6	2.14
SAMASI	RIMANAR	3	10	5.5
MOOLAIT BRI SUTNGA	KSEH LATYUT	5	4.5	5
	THANGLOOH	8	5	8
KREMMYRSIANG	UM-JOHROI	0.21	2.16	2.16
	UMJAN	0.22	8.70	1.4
PALA	UMSARKAR	0.29	4.41	10.34

SPRING MAPPING

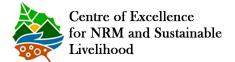
- pH: is a measure of the basicity or acidity of a solution with a range of 0-14, 7 being Neutral, <7 is acidic >7 basic
- TDS: is a measure of dissolved organic and inorganic substances in water (mg/liter or ppm)
- Salinity: is the amount of salts dissolved in a solution (ppm)
- Electrical Conductivity: is the ability of the solution to allow electric current to flow through (μS/cm)

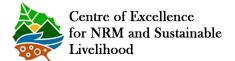
DESIRABLE LIMITS FOR DRINKING WATER					
	WHO BIS				
pН	6.5 - 8.5	6.5 - 8.5			
TDS	300 ppm	500 ppm			
EC	400 μS/cm	300 μ S/cm			

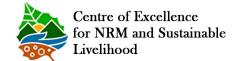


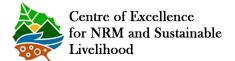
SI.no	District	Village	Block	Spring Name	Ownership	Household benefit	Zn (ppm)	Cu (ppm)	Cd (ppm	Fe (ppm)	Pb (ppm)	As (ppr
	East Jaintia	Kremmy rsiang	Saipung	Ringpala	Community	40	0.192	0.044	0.001	0.319	0.012	0.034
	East Jaintia	Jalaphet Bri Sumer	Saipung	Umsning-2	Community	20	0.105	0.044	0	0.484	0.014	0.212
	East Jaintia	Diensatlang	Khliehriat	Deiniang	Community	14	0.035	0.03	0	0.227	0.001	-0.00
4	East Jaintia	Diensatlang	Khliehriat	Umlum	Community	24	0.039	0.029	0	0.414	0.013	0.338
	East Jaintia	Umsatai	Khliehriat	Wah luber Khlieh Dam	Community	35	0.226	0.029		0.36	0.008	-0.00
	East Jaintia	Deinchy nrum	Khliehriat	Wah Tawiar	Community	40	0.076	0.026	0	0.402	0.006	-0.01
	East Jaintia	Pamrapaithlu	Khliehriat	Synrang Pailiang	Community	45	0.196	0.026	0.001	1.142	0.021	0.37
	East Jaintia	Jarian Sutnga	Saipung	Umbansati	Community	30	0.054	0.031	0	0.905	0.006	-0.00
	East Jaintia	Jarian Sutnga	Saipung	Luhiaw	Community	45	0.039	0.023	0	0.251	0.043	-0.00
	East Jaintia	Sakhain Moolimem	Saipung	Umty rpoh	Community	25	0.162	0.026	0	0.178	0.003	0.00
	West Jaintia	Khlooky nrien	Laskein	Neinshnong	Community	30	0.034	0.024	0	0.652	0.008	0.00
12	West Jaintia	Thadmuthlong C	Laskein	Ruiong	Community	20	0.025	0.023	0	0.616	0.008	0.11
13	West Jaintia	Khliehrait Nongjngi	Thadlaskein	Khlieh Natsiej	Community	30	0.281	0.03	0	1.158	0.02	-0.00
14	West Jaintia	Iongnoh	Thadlaskein	My ntngam	Community	50	0.015	0.028	0	0.904	0.001	0.19
	West Jaintia	Muphlang	Thadlaskein	Dong Pyrdi	Community	30	0.051	0.024	0	0.066	-0.003	-0.01
	East Garo Hills	Nengkra Awe	Samanda	Mikgitap	Community	30	0.025	0	0	0.778	0.01	-0.00
	East Garo Hills	Chimagre Gradekgittin	n Samanda	Rerugisim	Community	92	0.038	0.003	0	0.097	0.007	-0.0
	South Garo Hills	Rongkandi Jongsinggittim	Baghmara	Cotton spring	Community	8	0.176	0.062	0.001	0.982	0.064	0.01
	South Garo Hills	Dajugittim	Baghmara	Mabilkol	Community	106	0.046	-0.002		0.101	0.01	-0.01
20	South Garo Hills	Rongkandi Jongsinggittim	Baghmara	Songma spring	Community	77	0.043			0.393	0.011	-0.00

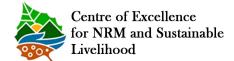
Springshed Management Training

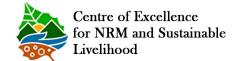

- ☐ MBMA impart various training on Springshed management and in cooperated with the external agency like AQWADAM, Chirag, PSI, Parsari and the internal agency like INR, MBDA.
- ☐ The MBMA also in cooperated with the line Department of the State like Soil and Water Conservation Department to impart knowledge and hand holding training on Spring shed management.
- ☐ The master trainer who enable the benefit of varied training conducted by MBMA are MGNREGA, MLAMP and MINR both in Khasi, Jaintia and Garo region.

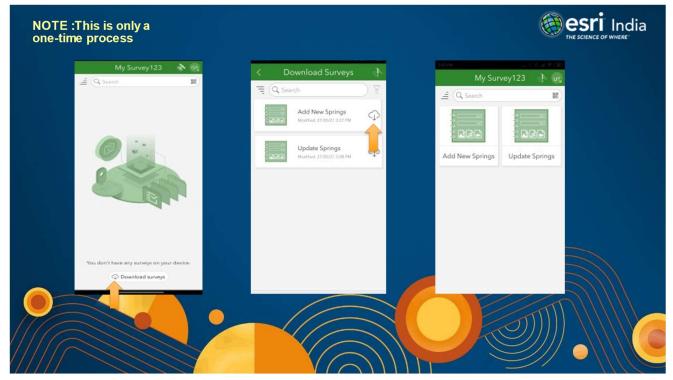


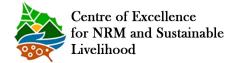


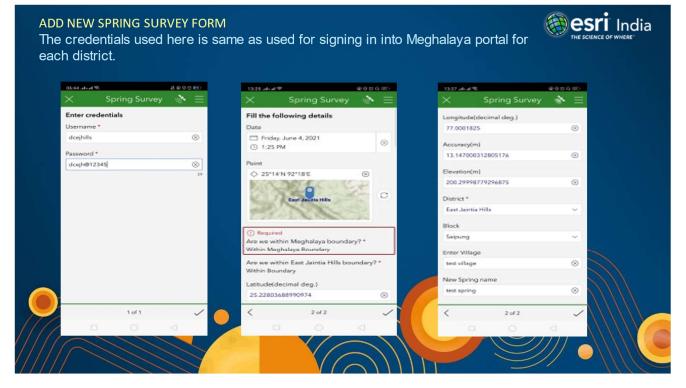


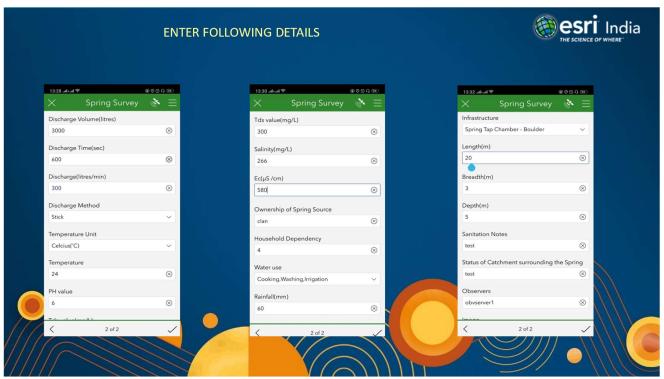


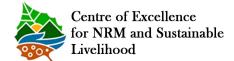


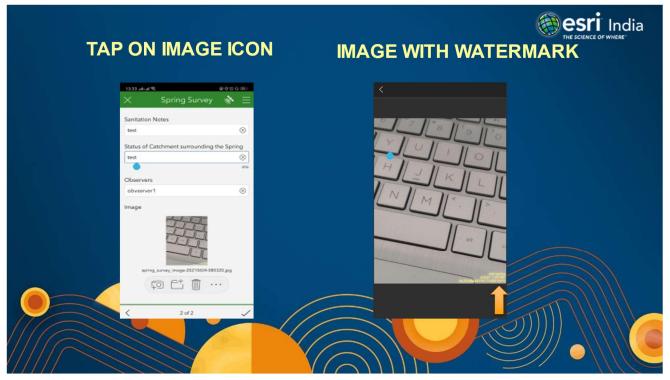


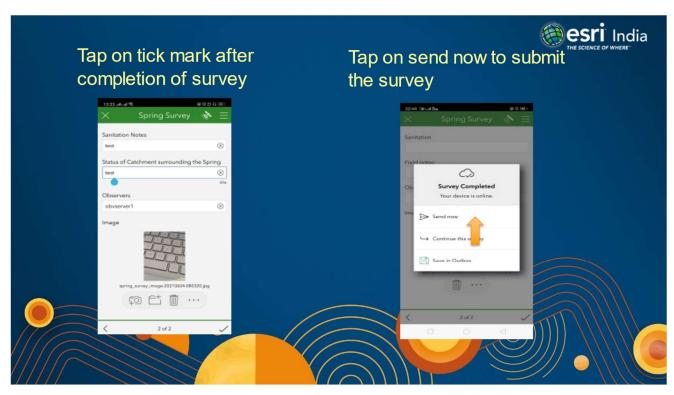


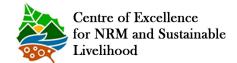


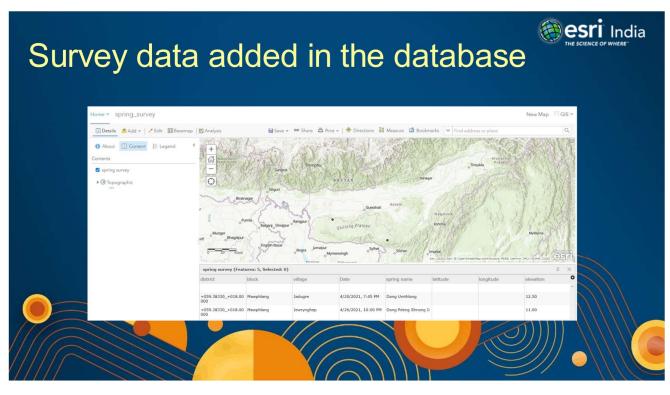


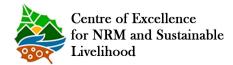


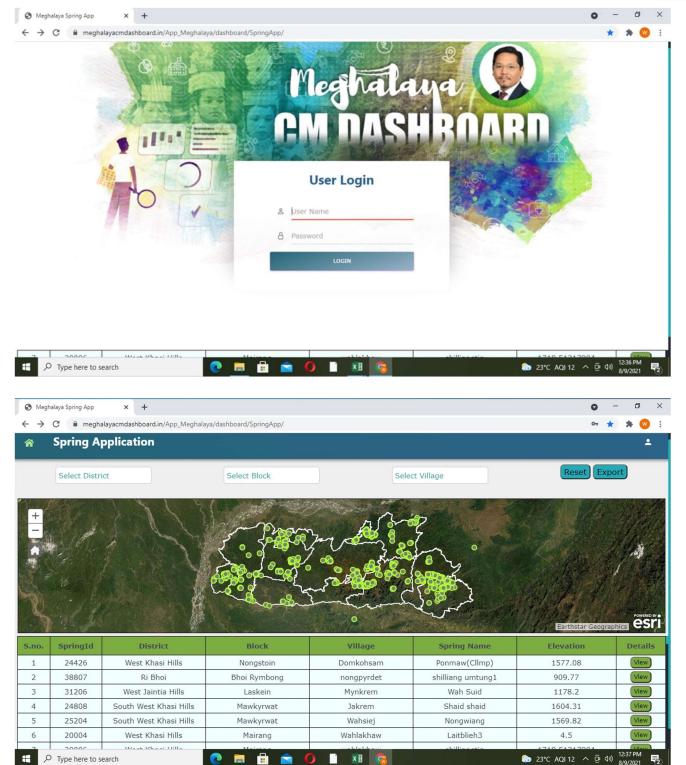


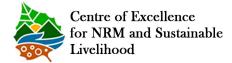


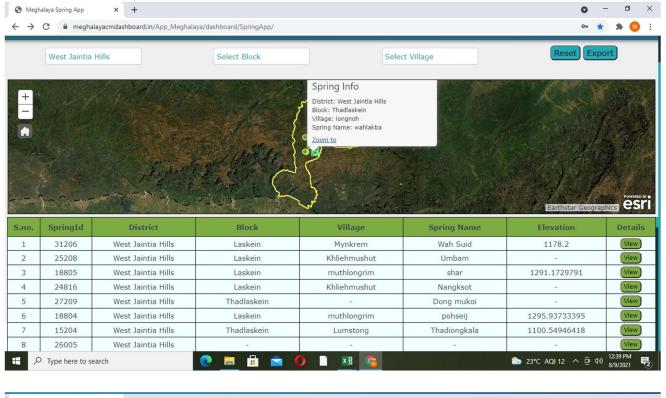


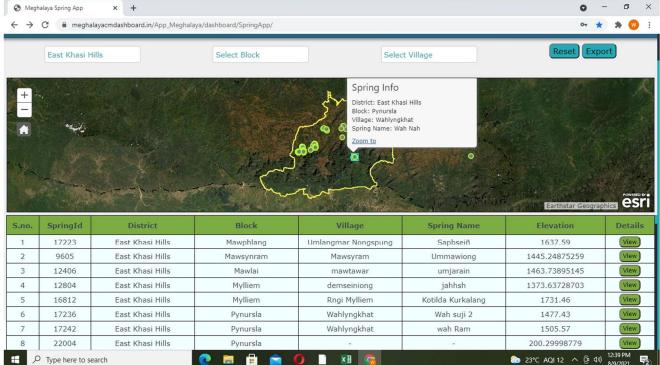












42017

23609

23610

23611

23612

23613

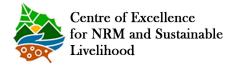
23215

Type here to search

1

2

3


4

5

6

East Jaintia Hills

956.71845033

934.80869237

1002

990

998.5642

952

(a) 23°C AQI 12 ∧ (a) (b)

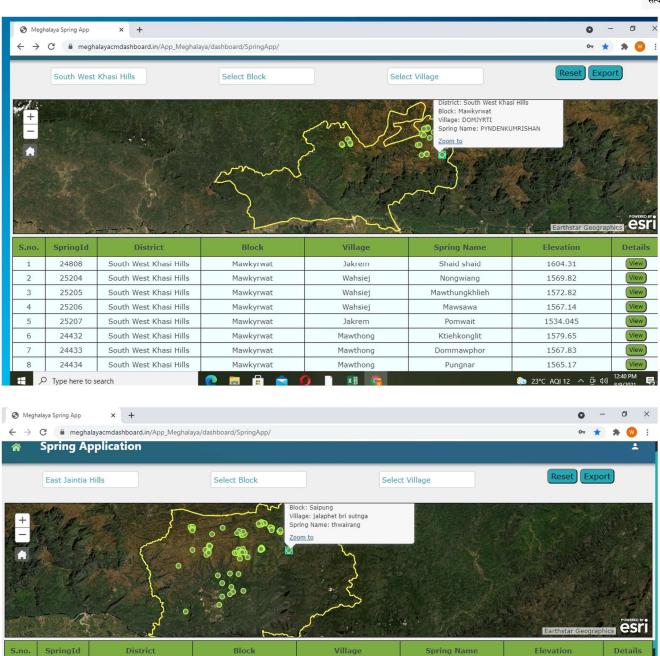
umjan

pohsiej

Nanwahrain

Umnanmali

umnan dongsliya


Pohchyrmit

Wah nandakha

View

View

View

larket

Mynthlu

Tluh

Tluh

Tluh

Tluh

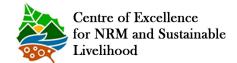
x 🎚

Saipung

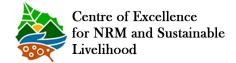
Saipung

Saipung

Saipung


Saipung

Saipung


THANKS		

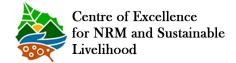
Institute of Natural Resources, Meghalaya

Hydrological Spring Mapping of village in Meghalaya

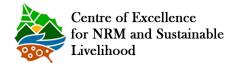
Project site target	6605 villages (all over the State)				
Project cost estimates	₹ 1,06,93,800.00				
Project period	One year				
Implementatio Agency	Green Volunteers from each circle				
Project Facilitating Agency	INRM, MBDA				
ProjectActivities	· Selection of the GV etc for carrying out the exercise.				
	· Training and capacity building tovohhænteers				
	· Springs mapping (Quantity &Quality				
	· Preparation of the Village Water Security Plan.				

OBJECTIVE

- Generation Spring Database for future reference.
- To improve the quantity and quality of the water available within the village
- To propagate thimportance of spring protection to the community.


Block Level Training for Green Volunteers

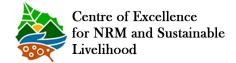
Progress


• ..\H.S.M. Blocks completed (Edited S5).xlsx

THANK YOU

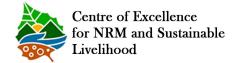
Training on Uses Of Remote Sensing, GIS & GPS Tools and Techniques

SILGAMCHIY D SHIRA
PROGRAMME ASSOCIATE-GIS
MBMA/MBDA

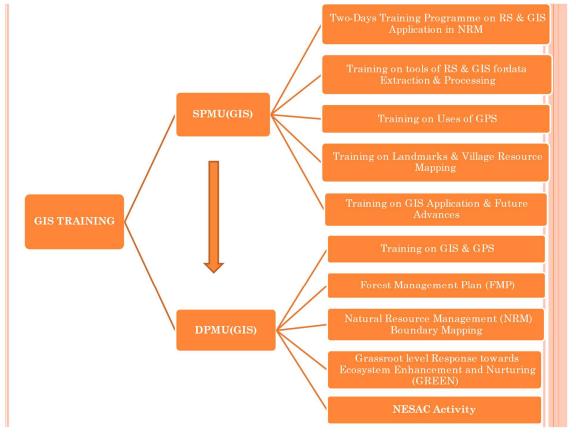

CONTENTS

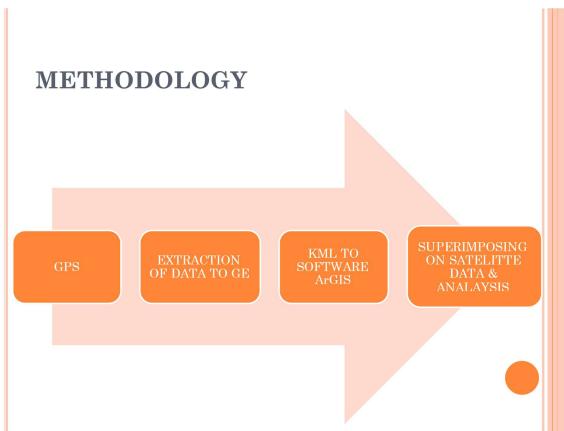
- Objective
- Target Group
- GIS Training
- Methodology
- Two-Days Training Programme on RS & GIS Application in NRM
- o Training on tools of RS & GIS for data extraction & Processing
- o Training on Uses of GPS
- Training on Landmarks & Village Resource Mapping
- Apprenticeship Training Program GIS Application & Future Advances
- Training on GIS & GPS
- Forest Management Plan (FMP)
- o Nature Resource Management (NRM) Boundary Mapping
- Grassroot level Response towards Ecosystem Enhancement and Nurturing (GREEN)
- NESAC Activity
- Summary

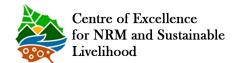
OBJECTIVE


To develop the understanding which can enable trainees to learn the concept, objectives, importance & application of RS,GIS, GPS, GOOGLE EARTH (GE) & Mobile App and Capacity building for planning and management for project purposes.

TARGET GROUP Internal SPMU & DPMU Team Other Department Functionaries Village Communities Village Community Facilitator (VCF) Apprentices (Students)



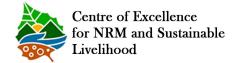




TWO-DAYS TRAINING PROGRAMME ON RS & GIS APPLICATION IN NRM

TRAINING ON TOOLS OF RS & GIS FOR DATA EXTRACTION & PROCESSING

GOVERNMENT. DEPARTMENTS (DMR AND S&WC)

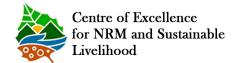


TRAINING ON USES OF GPS

GREEN VOLUNTEERS

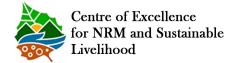
TRAINING ON LANDMARKS & VILLAGE RESOURCE MAPPING

o Marking of Landmarks-with the help of Handheld GPS (Points)


- Collection of Boundary
 - GPS based boundary tracking
 - Onscreen delineation using Google Earth
- Map Reading

3 Months Apprenticeship Training Program GIS APPLICATION & FUTURE ADVANCES

TRAINING ON GIS & GPS


- Basic Introduction on GIS and GPS.
- Basic Training to collect field data which are referenced to the earth.
- Using GPS Garmin Handheld available with DPMUs.

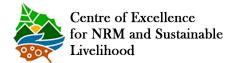
FOREST MANAGEMENT PLAN (FMP)

- Map Reading
- GPS demarcation of Sample plots
- Reaching to the sample plots (go to location/navigating app)

VCFs

NATURAL RESOURCE MANAGEMENT (NRM) BOUNDARY MAPPING

• Participatory training programme for the VCFs in using GPS

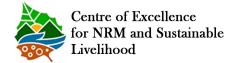


GRASSROOT LEVEL RESPONSE TOWARDS **ECOSYSTEM ENHANCEMENT AND** NURTURING (GREEN) Sangrah 2.0

• Refresher training on GPS

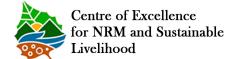
NESAC ACTIVITY

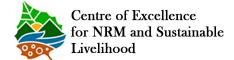
Village Resource Mapping App developed by NESAC to capture landmarks of Villages for the project viz. "Village level Land use/Land cover mapping of Khasi & Jaintia Hills District of Meghalaya using High Resolution Geospatial Data.

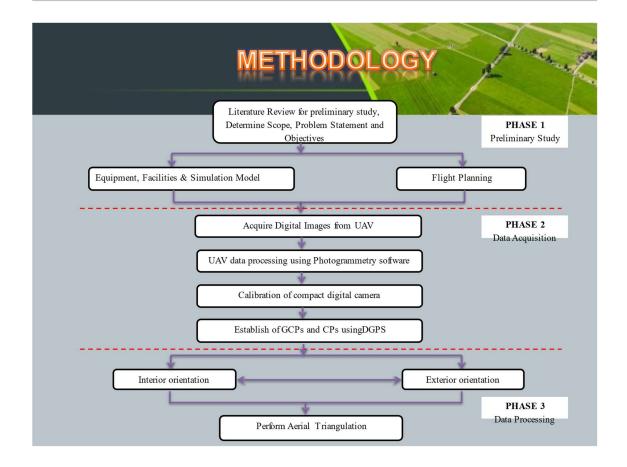


VCFs

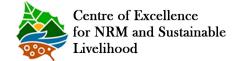
SUMMARY

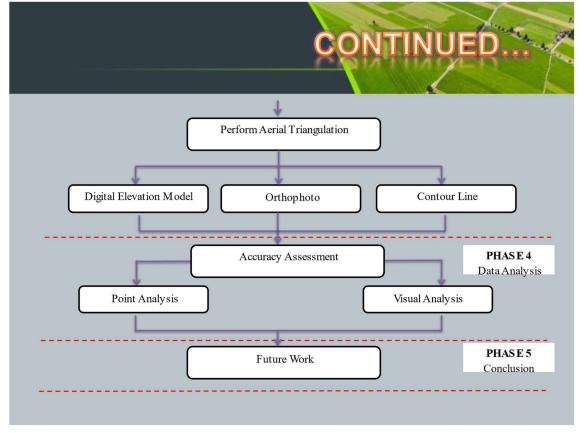

Sl. No.	Trainings	No. of Trainees trained			
1	Two-Days Training Programme on RS/GIS Application in NRM (MBDA Staffs)	56			
2	Training on tools of RS/GIS for data extraction & Processing (Govt. Department)	25			
3	Training on Uses of GPS (Green Volunteers)	1000			
4	Training on Landmarks & Village Resource Mapping (Village Communities)	800			
5	Training on GIS Application & Future Advances (Apprentice)	15			
6	Training on GIS/GPS (VCFs & VNRMC Members)	1600			
7	FMP (VCFs)	1200			
8	NRM Boundary Mapping (VCFs)	200			
9	GREEN (VCFs)	350			
10	NESAC Activity (VCFs)	275			
	TOTAL				

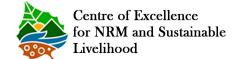

APPLICATION OF UAV TECHNOLOGY FOR NATURAL RESOURCE MANAGEMENT IN MEGHALAYA



TRENDS UAV IN SURVEYING

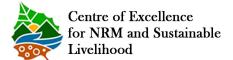

- This is apparent in comparison to conventional aerial surveying which offer accurate maps, but very expensive and have limited endurance for only a few hours. The UAV systems could be mounted on either high or low altitude platform.
- Low-altitude systems have advantages in conducting photogrammetric surveys under the cloud, providing different views and tilted images of the surveyed objects, low-cost and easy-to-maintain for engineering applications systems such as topographic either large or small scale mapping.
- The development of this technology is very beneficial for monitoring purpose of limited time and budget. It has been reported that UAV has been practiced in many applications such as farming, surveillance, road maintenance, recording and documentation of cultural heritage.

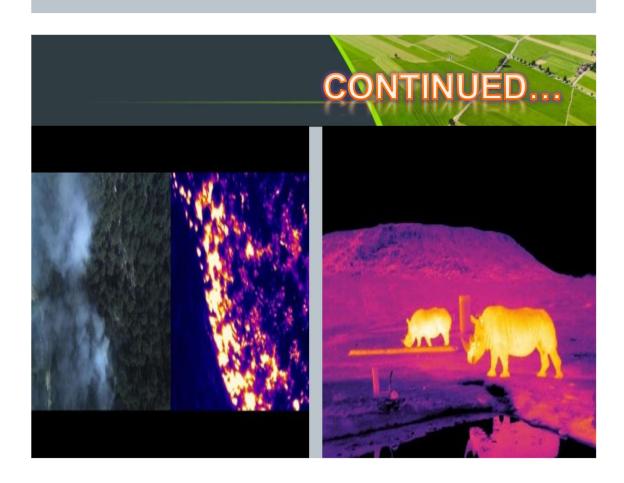




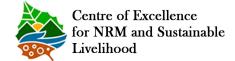
APPLICATION OF UAV

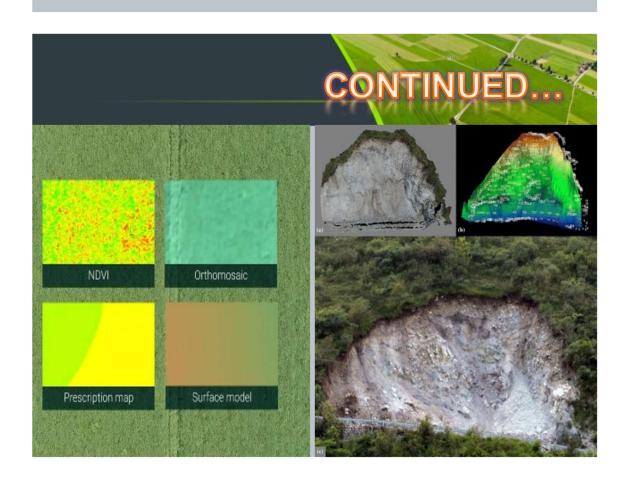
> Agriculture


- Agriculture is the major and fastest growing resource monitoring application of UAV. It has gained popularity in precision agriculture to increase production.
- Monitoring crop health is one of the most important applications of UAV in precision agriculture which includes detection of diseases, dead leaf, water stress, weed cover mapping and herbicide application monitoring
- Mostly small UAV have been used to measure the height of crops, supervise planting pattern of sugarcane weed, pest and disease infestations.
- The rapid growth in the use of UAV for agricultural resource management indicates the potential of UAV for realtime—cost-effective crop monitoring on a smaller scale

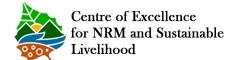


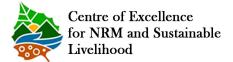
> Forest and wildlife reserve


- Fine spatial-scale UAV data are used for sustainable management of various forest and wildlife resources where drones play an important role in monitoring inaccessible areas.
- A thermal imager and a hyperspectral sensor in visible—NIR bands have been used with a radio-controlled fixedwing model for forest fire monitoring.
- Other environmental research applications include biodiversity and habitat monitoring which used small UAV for detecting the density and circulation of various animal species in several forest region.
- It offers a great opportunity for realtime monitoring of endangered and rare species, and this approach has been proved to be cheaper and safer for monitoring a vast area of wildlife habitat than ground-based technique

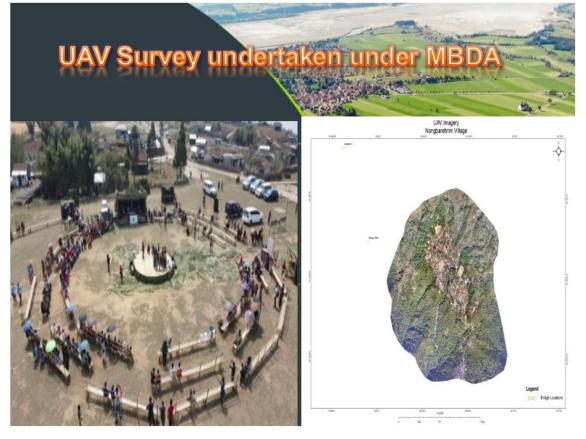


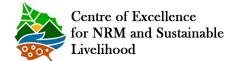
➤ Water and Land Resource

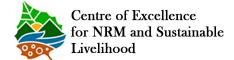

- The applications of UAV which include the mapping and monitoring of various water and land resources. The applications in water resources include rivers, lakes and wetland mapping
- UAV has also been used for various soil properties and soil erosion elated studies such as multitemporal analysis of hydrological soil surface characteristics, monitoring of gully erosion and assessing the impact of soil surface characteristics on vineyard erosion and landslide evaluation.
- Also used for measuring water level in rivers and lakes from lightweight UAVs.
- Recently, our team has undergone a survey in Siju region where the major landslides and flood occurs and the UAV output data has been used for further studied of the affected area.

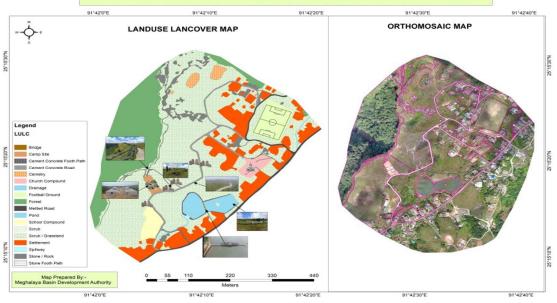


•		
Specification	Satellite Data	UAV Data
Spatial Resolution	Medium to high	Very High
Temporal	Fixed	Flexible
Resolution		
Spectral Resolution	Very High	Increase with cost
Scale	Covers larger region	Suitable for small
		regions
Data Processing	Shorts	Long
Time		
Data Acquisition	Restricted and fixed	Directly controlled
		and flexible
Cost	Increased with	Cost-effective as
	resolution and area	compared to
		satellite data



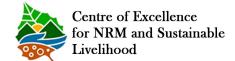


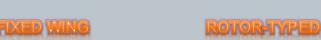



CONTINUED...

ORTHOMOSAIC IMAGE OF TOURISM SITE AT MAWMLUH VILLAGE

CONTINUED...

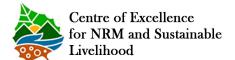

TOURISM SITE AT MAWMLUH VILLAGE


FUTURE WORK

- The use of UAV is still in its early stage for natural resource management but the increasing trend seems to be unstoppable, and there is a rapid advancement in the field because of the low -cost application of specific UAVs.
- The resolution, accuracy, flexibility and spectral range are increasing, also focuses on the engineering part of UAVs to increase its capability.
- However, some of the limitations require more attention and efforts to improve the overall performance of UAVs. These limitations are:
 - **-Data processing**: As the area increases, the number of images also increases and handling large datasets and processing data is one of the biggest limitations of UAV. Apart from this robust, high efficiency, automation and intelligence for data processing are worth more efforts
 - **-Platform**: Due to small size and lightweight, instability of the UAVs causes distortion in data.
 - -Sensors: Due to the limitation of payload in small drones, it is impossible to mount highly effective parallel multisensor cameras in the small space
 - **-Restrictions and regulations**: Restrictions on the use of drones in many areas are also a major limitation which prevents researches from testing all possibilities.

CONTINUED...

• It is expected that with the advancement of UAVs technology, all the limitations will be taken care of.



HYBRID VTOL

